ÌâÄ¿ÄÚÈÝ

7£®°¬Èø¿Ë•Å£¶Ù£¨1643Äê1ÔÂ4ÈÕ-1727Äê3ÔÂ31ÈÕ£©Ó¢¹ú»Ê¼Òѧ»á»á³¤£¬Ó¢¹úÖøÃûÎïÀíѧ¼Ò£¬Í¬Ê±ÔÚÊýѧÉÏÒ²ÓÐÐí¶à½Ü³ö¹±Ï×£¬Å£¶ÙÓá°×÷ÇÐÏß¡±µÄ·½·¨Çóº¯Êýf£¨x£©Áãµãʱ¸ø³öÒ»¸öÊýÁÐ{xn}£ºÂú×ã${x_{n+1}}={x_n}-\frac{{f£¨{x_n}£©}}{{f'£¨{x_n}£©}}$£¬ÎÒÃǰѸÃÊýÁгÆÎªÅ£¶ÙÊýÁУ®Èç¹ûº¯Êýf£¨x£©=ax2+bx+c£¨a£¾0£©ÓÐÁ½¸öÁãµã1£¬2£¬ÊýÁÐ{xn}Ϊţ¶ÙÊýÁУ¬Éè${a_n}=ln\frac{{{x_n}-2}}{{{x_n}-1}}$£¬ÒÑÖªa1=2£¬xn£¾2£¬Ôò{an}µÄͨÏʽan=2n£®

·ÖÎö ÓÉÒÑÖªµÃµ½a£¬b£¬cµÄ¹ØÏµ£¬¿ÉµÃf£¨x£©=ax2-3ax+2a£¬Ç󵼺ó´úÈë${x_{n+1}}={x_n}-\frac{{f£¨{x_n}£©}}{{f'£¨{x_n}£©}}$£¬ÕûÀí¿ÉµÃ$\frac{{x}_{n+1}-2}{{x}_{n+1}-1}=£¨\frac{{x}_{n}-2}{{x}_{n}-1}£©^{2}$£¬Á½±ßÈ¡¶ÔÊý£¬¿ÉµÃ$ln\frac{{x}_{n}-2}{{x}_{n}-1}$ÊÇÒÔ2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬ÔÙÓɵȱÈÊýÁеÄͨÏʽÇ󵼴𰸣®

½â´ð ½â£º¡ßº¯Êýf£¨x£©=ax2+bx+c£¨a£¾0£©ÓÐÁ½¸öÁãµã1£¬2£¬
¡à$\left\{\begin{array}{l}{a+b+c=0}\\{4a+2b+c=0}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{c=2a}\\{b=-3a}\end{array}\right.$£®
¡àf£¨x£©=ax2-3ax+2a£®
Ôòf¡ä£¨x£©=2ax-3a£®
Ôò${x}_{n+1}={x}_{n}-\frac{a{{x}_{n}}^{2}-3a{x}_{n}+2a}{2a{x}_{n}-3a}$=${x}_{n}-\frac{{{x}_{n}}^{2}-3{x}_{n}+2}{2{x}_{n}-3}$=$\frac{{{x}_{n}}^{2}-2}{2{x}_{n}-3}$£¬
¡à$\frac{{x}_{n+1}-2}{{x}_{n+1}-1}=£¨\frac{{x}_{n}-2}{{x}_{n}-1}£©^{2}$£¬
Ôò$ln\frac{{x}_{n}-2}{{x}_{n}-1}$ÊÇÒÔ2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬
¡ß${a_n}=ln\frac{{{x_n}-2}}{{{x_n}-1}}$£¬ÇÒa1=2£¬
¡àÊýÁÐ{an}ÊÇÒÔ2ΪÊ×ÏÒÔ2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬
Ôò${a}_{n}=2•{2}^{n-1}={2}^{n}$£¬
¹Ê´ð°¸Îª£º2n£®

µãÆÀ ±¾Ì⿼²éÊýÁеÝÍÆÊ½£¬¿¼²éÁ˵ȱȹØÏµµÄÈ·¶¨£¬ÊôÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø