题目内容

11.已知函数f(x)=$\frac{1-4lnx}{{x}^{2}}$.
(1)求函数f(x)的单调区间;
(2)若对任意的x1,x2∈[$\frac{1}{e}$,+∞),且x1≠x2,不等式$\frac{f({x}_{1})-f({x}_{2})}{{{x}_{2}}^{2}-{{x}_{1}}^{2}}$≤$\frac{k}{{{x}_{1}}^{2}•{{x}_{2}}^{2}}$恒成立,求实数k的取值范围.

分析 (1)求出函数的导数,解关于导函数的方程,求出函数的单调区间即可;
(2)问题转化为$\frac{4l{nx}_{1}+k-1}{{{x}_{1}}^{2}}$≤$\frac{4l{nx}_{2}+k-1}{{{x}_{2}}^{2}}$,设g(x)=$\frac{4lnx+k-1}{{x}^{2}}$,则g(x)在[$\frac{1}{e}$,+∞)递减,根据函数的单调性求出k的范围即可.

解答 解:(1)f′(x)=$\frac{-6+8lnx}{{x}^{3}}$,令f′(x)=0,解得:x=${e}^{\frac{3}{4}}$,
故x∈(0,${e}^{\frac{3}{4}}$)时,f′(x)<0,f(x)递减,
x∈(${e}^{\frac{3}{4}}$,+∞)时,f′(x)>0,f(x)递增;
(2)f(x)=$\frac{1-4lnx}{{x}^{2}}$,于是$\frac{\frac{1-4l{nx}_{1}}{{{x}_{1}}^{2}}-\frac{1-4l{nx}_{2}}{{{x}_{2}}^{2}}}{{{x}_{2}}^{2}{{-x}_{1}}^{2}}$≤$\frac{k}{{{x}_{1}}^{2}{{•x}_{2}}^{2}}$,不妨设x1>x2
∴$\frac{{{x}_{2}}^{2}(1-4l{nx}_{1}){{-x}_{1}}^{2}(1-4l{nx}_{2})}{{{x}_{2}}^{2}{{-x}_{1}}^{2}}$≤k,
即${{x}_{2}}^{2}$(1-4lnx1)-${{x}_{1}}^{2}$(1-4lnx2)≥k(${{x}_{2}}^{2}$-${{x}_{1}}^{2}$),
整理得:${{x}_{2}}^{2}$(k+4lnx1-1)≤${{x}_{1}}^{2}$(k+4lnx2-1),
即$\frac{4l{nx}_{1}+k-1}{{{x}_{1}}^{2}}$≤$\frac{4l{nx}_{2}+k-1}{{{x}_{2}}^{2}}$,
设g(x)=$\frac{4lnx+k-1}{{x}^{2}}$,则g(x)在[$\frac{1}{e}$,+∞)递减,
又g′(x)=$\frac{-8lnx+6-2k}{{x}^{3}}$,
令g′(x)=0,解得:x=${e}^{\frac{3-k}{4}}$,
故g(x)在(${e}^{\frac{3-k}{4}}$,+∞)递增,
故${e}^{\frac{3-k}{4}}$≤e-1
即$\frac{3-k}{4}$≤-1,
故k≥7.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网