题目内容
(Ⅰ)求证:平面PAC⊥平面PCD;
(Ⅱ)在线段PD上是否存在点E,使CE与平面PAD所成的角为45°?若存在,求出有
| PE |
| PD |
考点:平面与平面垂直的判定,直线与平面所成的角
专题:空间位置关系与距离
分析:(I)由已知中PA⊥平面ABCD,∠PBA=45°,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=BC=
AD,由勾股定理可得AC⊥CD,PA⊥CD,再由线面垂直的判定定理可得CD⊥面PAC,再由面面垂直的判定定理即可得到答案.
(II)取AD中点M,连接CM,可证得CM⊥平面PAD,连接ME,∠CME就是CE与平面PAD所成的角,进而根据CE与平面PAD所成的角为45°,得到满足条件的E点位置,进而得到答案.
| 1 |
| 2 |
(II)取AD中点M,连接CM,可证得CM⊥平面PAD,连接ME,∠CME就是CE与平面PAD所成的角,进而根据CE与平面PAD所成的角为45°,得到满足条件的E点位置,进而得到答案.
解答:
证明:(Ⅰ)连接AC,
∵PA=BC=1,AD=2.
∵PA⊥面ABCD,
∴PA⊥AB,
而∠PBA=45°,
∴AB=1,
又∠ABC=∠BAD=90°,
易得CD=AC=
.
由勾股定理逆定理得则AC⊥CD,
又PA⊥平面ABCD,CD?平面ABCD,
∴PA⊥CD.
又∵AC,PA?平面PAC,AC∩PA=A,
∴CD⊥平面PAC,
又∵CD?平面PCD,
∴平面PAC⊥平面PCD.

(Ⅱ)取AD中点M,连接CM,
∵AD=2BC,故AM=BC,
此时四边形ABCM为矩形,则CM⊥AD,
又∵PA⊥平面ABCD,CM?平面ABCD,
∴PA⊥CM.
∵AD,PA?平面PAD,AD∩PA=A,
∴CM⊥平面PAD,
连接ME,∠CME就是CE与平面PAD所成的角.
∵CM=1,
∴ME=1,在△PAD中,MD=1,
=1.
不难求到另一个点E的位置为
=
,
所以,线段PD上存在点E,使CE与平面PAD所成的角为450,此时
=1或
.
∵PA=BC=1,AD=2.
∵PA⊥面ABCD,
∴PA⊥AB,
而∠PBA=45°,
∴AB=1,
又∠ABC=∠BAD=90°,
易得CD=AC=
| 2 |
由勾股定理逆定理得则AC⊥CD,
又PA⊥平面ABCD,CD?平面ABCD,
∴PA⊥CD.
又∵AC,PA?平面PAC,AC∩PA=A,
∴CD⊥平面PAC,
又∵CD?平面PCD,
∴平面PAC⊥平面PCD.
(Ⅱ)取AD中点M,连接CM,
∵AD=2BC,故AM=BC,
此时四边形ABCM为矩形,则CM⊥AD,
又∵PA⊥平面ABCD,CM?平面ABCD,
∴PA⊥CM.
∵AD,PA?平面PAD,AD∩PA=A,
∴CM⊥平面PAD,
连接ME,∠CME就是CE与平面PAD所成的角.
∵CM=1,
∴ME=1,在△PAD中,MD=1,
| PE |
| PD |
不难求到另一个点E的位置为
| PE |
| PD |
| 1 |
| 5 |
所以,线段PD上存在点E,使CE与平面PAD所成的角为450,此时
| PE |
| PD |
| 1 |
| 5 |
点评:本题考查的知识点是平面与平面垂直的判定,直线与平面的夹角,存在性问题,难度中档.
练习册系列答案
相关题目
已知角θ的顶点在坐标原点,始边与x轴的正半轴重合,终边上有一点A(3,-4),则sin(2θ+
)的值为( )
| π |
| 2 |
A、
| ||
B、-
| ||
| C、-1 | ||
| D、1 |