ÌâÄ¿ÄÚÈÝ
14£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ô²C1ºÍC2µÄ²ÎÊý·½³Ì·Ö±ðÊÇ$\left\{\begin{array}{l}x=2+2cosϕ\\ y=2sinϕ\end{array}\right.$£¨ϕΪ²ÎÊý£©ºÍ$\left\{\begin{array}{l}x=cos¦Â\\ y=1+sin¦Â\end{array}\right.$£¨¦ÂΪ²ÎÊý£©£¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®£¨1£©ÇóÔ²C1ºÍC2µÄ¼«×ø±ê·½³Ì£»
£¨2£©ÉäÏßOM£º¦È=¦ÁÓëÔ²C1µÄ½»µã·Ö±ðΪO¡¢P£¬ÓëÔ²C2µÄ½»µã·Ö±ðΪO¡¢Q£¬Çó|OP|•|OQ|µÄ×î´óÖµ£®
·ÖÎö £¨1£©ÏÈ·Ö±ðÇó³öÆÕͨ·½³Ì£¬ÔÙд³ö¼«×ø±ê·½³Ì£»
£¨2£©ÀûÓü«¾¶µÄÒâÒ壬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©Ô²C1ºÍC2µÄ²ÎÊý·½³Ì·Ö±ðÊÇ$\left\{\begin{array}{l}x=2+2cosϕ\\ y=2sinϕ\end{array}\right.$£¨ϕΪ²ÎÊý£©ºÍ$\left\{\begin{array}{l}x=cos¦Â\\ y=1+sin¦Â\end{array}\right.$£¨¦ÂΪ²ÎÊý£©£¬
ÆÕͨ·½³Ì·Ö±ðΪ£¨x-2£©2+y2=4£¬x2+£¨y-1£©2=1£¬¼«×ø±ê·½³Ì·Ö±ðΪ¦Ñ=4cos¦È£¬¦Ñ=2sin¦È£»
£¨2£©ÉèP£¬Q¶ÔÓ¦µÄ¼«¾¶·Ö±ðΪ¦Ñ1£¬¦Ñ2£¬Ôò|OP|•|OQ|=¦Ñ1¦Ñ2=4sin2¦Á£¬
¡àsin2¦Á=1£¬|OP|•|OQ|µÄ×î´óֵΪ4£®
µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄת»¯£¬¿¼²é¼«¾¶µÄÒâÒåµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
4£®ÒÑÖª$\overrightarrow{a}$£¬$\overrightarrow{b}$ÊÇÁ½¸öÏòÁ¿£¬|$\overrightarrow{a}$|=1£¬|$\overrightarrow{b}$|=2£¬ÇÒ£¨$\overrightarrow{a}$+$\overrightarrow{b}$£©¡Í$\overrightarrow{a}$£¬ÈôÔÚ¡÷ABCÖУ¬$\overrightarrow{AB}$=$\overrightarrow{a}$£¬$\overrightarrow{AC}$=$\overrightarrow{b}$£¬DΪBCÖе㣬ÔòADµÄ³¤Îª£¨¡¡¡¡£©
| A£® | $\frac{{\sqrt{7}}}{2}$ | B£® | $\frac{{\sqrt{6}}}{2}$ | C£® | $\frac{{\sqrt{5}}}{2}$ | D£® | $\frac{{\sqrt{3}}}{2}$ |
2£®Å×ÎïÏßy=$\frac{1}{4}$x2µÄ×¼Ïß·½³ÌÊÇ£¨¡¡¡¡£©
| A£® | y=-1 | B£® | y=1 | C£® | x=-$\frac{1}{16}$ | D£® | x=$\frac{1}{16}$ |
9£®ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=4cos¦Á}\\{y=sin¦Á}\end{array}}\right.$£¨¦ÁΪ²ÎÊý£©£¬MÊÇÇúÏßCÉϵ͝µã£¬ÈôÇúÏßT¼«×ø±ê·½³Ì2¦Ñsin¦È+¦Ñcos¦È=20£¬ÔòµãMµ½TµÄ¾àÀëµÄ×î´óÖµ£¨¡¡¡¡£©
| A£® | $\sqrt{13}+4\sqrt{5}$ | B£® | $2+4\sqrt{5}$ | C£® | $4+4\sqrt{5}$ | D£® | $6\sqrt{5}$ |