题目内容
17.已知函数$f(x)=\left\{{\begin{array}{l}{2,x>m}\\{{x^2}+4x+4,x≤m}\end{array}}\right.$的图象与直线y=x恰有三个公共点,则实数m的取值范围是( )| A. | (-∞,-1] | B. | [2,+∞) | C. | [-1,2] | D. | [-1,2) |
分析 由题意可得只要满足直线y=x和射线y=2(x>m)有一个交点,而且直线y=x与函数f(x)=x2+4x+2的两个交点即可,画图便知,直线y=x与函数f(x)=x2+4x+2的图象的两个交点为(-2,-2)(-1,-1),由此可得实数m的取值范围.
解答
解:由题意可得射线y=x与函数f(x)=2(x>m)有且只有一个交点.
而直线y=x与函数f(x)=x2+4x+2,至多两个交点,
题目需要三个交点,则只要满足直线y=x与函数f(x)=x2+4x+2的图象有两个交点即可,
画图便知,y=x与函数f(x)=x2+4x+2的图象交点为A(-2,-2)、B(-1,-1),
故有 m≥-1.
而当m≥2时,直线y=x和射线y=2(x>m)无交点,故实数m的取值范围是[-1,2),
故选:D.
点评 本题主要考查函数与方程的综合应用,体现了转化、数形结合的数学思想,属于中档题.
练习册系列答案
相关题目
7.已知y=f′(x)是函数$f(x)=\frac{1}{3}{x^3}+2{x^2}+5$的导数,则f′(1)=( )
| A. | $\frac{22}{3}$ | B. | 10 | C. | 5 | D. | $\frac{10}{9}$ |
8.在研究色盲与性别的关系调查中,调查了男性240人,其中有40人患色盲,调查的260名女性中有10人患色盲.
(Ⅰ)根据以上数据建立一个2×2列联表;
(Ⅱ)能否有99.9%的把握认为“性别与患色盲有关系”?
附1:随机变量K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
附2:临界值参考表:
(Ⅰ)根据以上数据建立一个2×2列联表;
(Ⅱ)能否有99.9%的把握认为“性别与患色盲有关系”?
附1:随机变量K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
附2:临界值参考表:
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
5.设命题P:?x∈R,ex>1,则¬P为( )
| A. | ?x∈R,ex=1 | B. | ?x∈R,ex>1 | C. | ?x∈R,ex≤1 | D. | ?x∈R,ex≤1 |
2.对抛物线y=4x2,下列描述正确的是( )
| A. | 开口向右,焦点为(1,0) | B. | 开口向上,焦点为(0,1) | ||
| C. | 开口向上,焦点为(0,$\frac{1}{16}$) | D. | 开口向右,焦点为($\frac{1}{16}$,0) |
6.在△ABC中,角A,B,C的对边分别为a,b,c,已知C=120°,b=1,S△ABC=$\sqrt{3}$,则c=( )
| A. | $\sqrt{21}$ | B. | $\sqrt{13}$ | C. | 4 | D. | 3 |