题目内容
19.已知复数z=$\frac{2+i}{1-2i}$,则$\overline{z}$=( )| A. | i | B. | -i | C. | 1 | D. | -1 |
分析 直接由复数代数形式的乘除运算化简复数z得答案.
解答 解:z=$\frac{2+i}{1-2i}$=$\frac{(2+i)(1+2i)}{(1-2i)(1+2i)}=\frac{5i}{5}=i$,
则$\overline{z}$=-i.
故选:B.
点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
练习册系列答案
相关题目
9.班主任为了对本班学生的考试成绩进行分析,决定从全班25名男同学,15名女同学中随机抽取一个容量为8的样本进行分析.
(1)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出计算式即可,不
必计算出结果)
(2)随机抽取8位,他们的数学分数从小到大排序是:60,65,70,75,80,85,90,95,物理分数从
小到大排序是:72,77,80,84,88,90,93,95.
①若规定85分以上(包括85分)为优秀,求这8位同学中恰有3位同学的数学和物理分数均
为优秀的概率;
②若这8位同学的数学、物理分数事实上对应如表:
根据上表数据,由变量y与x的相关系数可知物理成绩y与数学成绩x之间具有较强的线性相关关系,现求y与x的线性回归方程(系数精确到0.01).
参考公式:回归直线的方程是:$\stackrel{∧}{y}$=bx+a,其中对应的回归估计值b=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,
参考数据:$\overline x=77.5$,$\overline y=84.875$,$\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}$≈1050,$\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}$≈688,.
(1)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出计算式即可,不
必计算出结果)
(2)随机抽取8位,他们的数学分数从小到大排序是:60,65,70,75,80,85,90,95,物理分数从
小到大排序是:72,77,80,84,88,90,93,95.
①若规定85分以上(包括85分)为优秀,求这8位同学中恰有3位同学的数学和物理分数均
为优秀的概率;
②若这8位同学的数学、物理分数事实上对应如表:
| 学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 数学分数x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
| 物理分数y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
参考公式:回归直线的方程是:$\stackrel{∧}{y}$=bx+a,其中对应的回归估计值b=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,
参考数据:$\overline x=77.5$,$\overline y=84.875$,$\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}$≈1050,$\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}$≈688,.
7.等差数列{an}的前n项和为Sn,已知a1-a5-a10-a15+a19=2,则S19的值为( )
| A. | 38 | B. | -19 | C. | -38 | D. | 19 |
14.已知a=2,$b={125^{\frac{1}{6}}}$,c=log47,则下列不等式关系成立的是( )
| A. | b<a<c | B. | a<b<c | C. | b<c<a | D. | c<a<b |
4.设F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,点P在双曲线上,已知|PF1|是|PF2|和|F1F2|的等差中项,且∠F1PF2=120°,则该双曲线的离心率为( )
| A. | 1 | B. | $\frac{3}{2}$ | C. | $\frac{5}{2}$ | D. | $\frac{7}{2}$ |
11.已知变量x,y满足$\left\{\begin{array}{l}2x-y≤0\\ x-2y+3≥0\\ x≥0\end{array}\right.$,则z=8x•2y的最大值为( )
| A. | 33 | B. | 32 | C. | 35 | D. | 34 |
8.已知a∈R,则“a<3”是“|x+2|+|x-1|>a恒成立”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
9.已知实数x,y满足$\left\{\begin{array}{l}x-y+2≥0\\ x+y≥0\\ 5x-y-6≤0.\end{array}\right.$若z=x+my的最小值是-5,则实数m取值集合是( )
| A. | {-4,6} | B. | $\left\{{-\frac{7}{4},6}\right\}$ | C. | $\left\{{-4,-\frac{7}{4}}\right\}$ | D. | $\left\{{-4,-\frac{7}{4},6}\right\}$ |