ÌâÄ¿ÄÚÈÝ
7£®ÒÑ֪˫ÇúÏß$¦££º{x^2}-\frac{y^2}{b^2}=1$£¨b£¾0£©£¬Ö±Ïßl£ºy=kx+m£¨km¡Ù0£©£¬lÓ릣½»ÓÚP¡¢QÁ½µã£¬P'ΪP¹ØÓÚyÖáµÄ¶Ô³Æµã£¬Ö±ÏßP'QÓëyÖá½»ÓÚµãN£¨0£¬n£©£»£¨1£©Èôµã£¨2£¬0£©ÊǦ£µÄÒ»¸ö½¹µã£¬Ç󦣵Ľ¥½üÏß·½³Ì£»
£¨2£©Èôb=1£¬µãPµÄ×ø±êΪ£¨-1£¬0£©£¬ÇÒ$\overrightarrow{NP'}=\frac{3}{2}\overrightarrow{P'Q}$£¬ÇókµÄÖµ£»
£¨3£©Èôm=2£¬Çón¹ØÓÚbµÄ±í´ïʽ£®
·ÖÎö £¨1£©ÓÉË«ÇúÏß$¦££º{x^2}-\frac{y^2}{b^2}=1$£¨b£¾0£©£¬µã£¨2£¬0£©ÊǦ£µÄÒ»¸ö½¹µã£¬Çó³öc=2£¬a=1£¬ÓÉ´ËÄÜÇó³ö¦£µÄ±ê×¼·½³Ì£¬´Ó¶øÄÜÇó³ö¦£µÄ½¥½üÏß·½³Ì£®
£¨2£©Ë«ÇúÏߦ£Îª£ºx2-y2=1£¬Óɶ¨±È·Öµã×ø±ê¹«Ê½£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³ökµÄÖµ£®
£¨3£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬kPQ=k0£¬Ôò${P}^{'}£¨-{{x}_{1}£¬{y}_{1}£©£¬{l}_{PQ}={k}_{0}x+n}^{\;}$£¬ÓÉ$\left\{\begin{array}{l}{y=kx+2}\\{{x}^{2}-\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$£¬µÃ£¨b2-k2£©x2-4kx-4-b2=0£¬ÓÉ$\left\{\begin{array}{l}{y={k}_{0}x+n}\\{{x}^{2}-\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$£¬µÃ£¨${b}^{2}-{{k}_{0}}^{2}$£©x2-2k0nx-n2-b2=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³ön¹ØÓÚbµÄ±í´ïʽ£®
½â´ð ½â£º£¨1£©¡ßË«ÇúÏß$¦££º{x^2}-\frac{y^2}{b^2}=1$£¨b£¾0£©£¬µã£¨2£¬0£©ÊǦ£µÄÒ»¸ö½¹µã£¬
¡àc=2£¬a=1£¬¡àb2=c2-a2=4-1=3£¬
¡à¦£µÄ±ê×¼·½³ÌΪ£º${x}^{2}-\frac{{y}^{2}}{3}$=1£¬
¦£µÄ½¥½üÏß·½³ÌΪ$y=¡À\sqrt{3}x$£®
£¨2£©¡ßb=1£¬¡àË«ÇúÏߦ£Îª£ºx2-y2=1£¬P£¨-1£¬0£©£¬P¡ä£¨1£¬0£©£¬
¡ß$\overrightarrow{N{P}^{'}}$=$\frac{3}{2}$$\overrightarrow{{P}^{'}Q}$£¬ÉèQ£¨x2£¬y2£©£¬
ÔòÓж¨±È·Öµã×ø±ê¹«Ê½£¬µÃ£º
$\left\{\begin{array}{l}{1=\frac{0+\frac{3}{2}{x}_{2}}{1+\frac{3}{2}}}\\{0=\frac{n+\frac{3}{2}{y}_{2}}{1+\frac{3}{2}}}\end{array}\right.$£¬½âµÃ${x}_{2}=\frac{5}{3}$£¬¡ß${{x}_{2}}^{2}-{{y}_{2}}^{2}=1$£¬¡à${y}_{2}=¡À\frac{4}{3}$£¬
¡à$k=\frac{{y}_{2}-0}{{x}_{2}+1}$=$¡À\frac{1}{2}$£®
£¨3£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬kPQ=k0£¬
Ôò${P}^{'}£¨-{{x}_{1}£¬{y}_{1}£©£¬{l}_{PQ}={k}_{0}x+n}^{\;}$£¬
ÓÉ$\left\{\begin{array}{l}{y=kx+2}\\{{x}^{2}-\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$£¬µÃ£¨b2-k2£©x2-4kx-4-b2=0£¬
${x}_{1}+{x}_{2}=\frac{4k}{{b}^{2}-{k}^{2}}$£¬${x}_{1}{x}_{2}=\frac{-4-{b}^{2}}{{b}^{2}-{k}^{2}}$£¬
ÓÉ$\left\{\begin{array}{l}{y={k}_{0}x+n}\\{{x}^{2}-\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$£¬µÃ£¨${b}^{2}-{{k}_{0}}^{2}$£©x2-2k0nx-n2-b2=0£¬
-x1+x2=$\frac{2{k}_{0}n}{{b}^{2}-{{k}_{0}}^{2}}$£¬-x1x2=$\frac{-{n}^{2}-{b}^{2}}{{b}^{2}-{{k}_{0}}^{2}}$£¬
¡àx1x2=$\frac{-4-{b}^{2}}{{b}^{2}-{k}^{2}}$=$\frac{{n}^{2}+{b}^{2}}{{b}^{2}-{{k}_{0}}^{2}}$£¬¼´$\frac{{b}^{2}-{{k}_{0}}^{2}}{{b}^{2}-{k}^{2}}$£¬¼´$\frac{{b}^{2}-{{k}_{0}}^{2}}{{b}^{2}-{k}^{2}}$=$\frac{{n}^{2}+{b}^{2}}{-4-{b}^{2}}$£¬
$\frac{k}{{k}_{0}}$=$\frac{\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}}{\frac{{y}_{2}-{y}_{1}}{{x}_{2}+{x}_{1}}}$=$\frac{{x}_{1}+{x}_{2}}{{x}_{2}-{x}_{1}}$=$\frac{2k}{{k}_{0}n}•\frac{{b}^{2}-{{k}_{0}}^{2}}{{b}^{2}-{k}^{2}}$=$\frac{2k}{{k}_{0}n}•\frac{{n}^{2}+{b}^{2}}{-4-{b}^{2}}$£¬
»¯¼ò£¬µÃ2n2+n£¨4+b2£©+2b2=0£¬
¡àn=-2»òn=$\frac{{b}^{2}}{-2}$£¬
µ±n=-2£¬ÓÉ$\frac{{b}^{2}-{{k}_{0}}^{2}}{{b}^{2}-{k}^{2}}$=$\frac{{n}^{2}+{b}^{2}}{-4-{b}^{2}}$£¬µÃ2b2=k2+k02£¬
ÓÉ$\left\{\begin{array}{l}{y={k}_{0}x-2}\\{y=kx+2}\end{array}\right.$£¬µÃ$\left\{\begin{array}{l}{x=\frac{4}{{k}_{0}-k}}\\{y=\frac{2k+2{k}_{0}}{{k}_{0}-k}}\end{array}\right.$£¬
¼´Q£¨$\frac{4}{{k}_{0}-k}$£¬$\frac{2k+2{k}_{0}}{{k}_{0}-k}$£©£¬´úÈëx2-$\frac{{y}^{2}}{{b}^{2}}$=1£¬»¯¼ò£¬µÃ£º
${b}^{2}-£¨4+k{k}_{0}£©{b}^{2}+4k{k}_{0}=0$£¬½âµÃb2=4»òb2=kk0£¬
µ±b2=4ʱ£¬Âú×ãn=$\frac{{b}^{2}}{-2}$£¬
µ±b2=kk0ʱ£¬ÓÉ2b2=k2+k02£¬µÃk=k0£¨ÉáÈ¥£©£¬
×ÛÉÏ£¬µÃn=$\frac{{b}^{2}}{-2}$£®
µãÆÀ ±¾Ì⿼²éË«ÇúÏߵĽ¥½üÏßµÄÇ󷨣¬¿¼²éÖ±ÏßµÄбÂʵÄÇ󷨣¬¿¼²én¹ØÓÚbµÄ±í´ïʽµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâË«ÇúÏß¡¢Ö±Ïß¡¢Î¤´ï¶¨ÀíµÄºÏÀíÔËÓã®
| A£® | 4¦Ð+8 | B£® | 4¦Ð+12 | C£® | 8¦Ð+8 | D£® | 8¦Ð+12 |
| A£® | $£¨{1£¬\frac{{\sqrt{5}}}{2}}£©$ | B£® | $£¨{\sqrt{5}£¬+¡Þ}£©$ | C£® | $£¨{\frac{{\sqrt{5}}}{2}£¬\sqrt{5}}£©$ | D£® | $£¨{1£¬\frac{{\sqrt{5}}}{2}}£©¡È£¨{\sqrt{5}£¬+¡Þ}£©$ |