题目内容
已知数列{an}的前n项和为Sn,a1=1,且2nSn+1-2(n+1)Sn=n(n+1)(n∈N*).数列{bn}满足bn+2-2bn+1+bn=0(n∈N*).b3=5,其前9项和为63.
(1)求数列{an}和{bn}的通项公式;
(2)令cn=
+
,数列{cn}的前n项和为Tn,若对任意正整数n,都有Tn-2n∈[a,b],求b-a的最小值.
(1)求数列{an}和{bn}的通项公式;
(2)令cn=
| bn |
| an |
| an |
| bn |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由2nSn+1-2(n+1)Sn=n(n+1)(n∈N*),变形
-
=
,可得数列{
}是等差数列,利用等差数列的通项公式可得
,Sn=
.再利用“当n≥2时,an=Sn-Sn-1,当n=1时也成立”即可得出an.由于数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),可得数列{bn}是等差数列,利用等差数列的通项公式及其前n选和公式即可得出.
(2)cn=
+
=
+
=2+2(
-
),利用“裂项求和”可得:数列{cn}的前n项和为Tn=3+2n-2(
+
).设An=3-2(
+
),可得数列{An}单调递增,得出:
≤An<3.由于对任意正整数n,都有Tn-2n∈[a,b],可得a≤
,b≥3,即可得出.
| Sn+1 |
| n+1 |
| Sn |
| n |
| 1 |
| 2 |
| Sn |
| n |
| Sn |
| n |
| n(n+1) |
| 2 |
(2)cn=
| bn |
| an |
| an |
| bn |
| n+2 |
| n |
| n |
| n+2 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 4 |
| 3 |
| 4 |
| 3 |
解答:
解:(1)∵2nSn+1-2(n+1)Sn=n(n+1)(n∈N*),∴
-
=
,∴数列{
}是等差数列,首项为1,公差为
,∴
=1+
(n-1),
∴Sn=
.∴当n≥2时,Sn-1=
,an=Sn-Sn-1=
-
=n,当n=1时也成立.∴an=n.
∵数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),∴数列{bn}是等差数列,设公差为d,∵前9项和为63,∴
=9b5=63,解得b5=7,又b3=5,
∴d=
=1,∴bn=b3+(n-3)d=5+n-3=n+2,∴bn=n+2.
因此:an=n,bn=n+2.
(2)cn=
+
=
+
=2+2(
-
),
∴数列{cn}的前n项和为Tn=2n+2[(1-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=2n+2(1+
-
-
)
=3+2n-2(
+
).
∴Tn-2n=3-2(
+
).
设An=3-2(
+
),
∵An+1-An=3-2(
+
)-3+2(
+
)=2(
-
)>0,
∴数列{An}单调递增,
∴(An)min=A1=
.
而An<3,
∴
≤An<3.
∵对任意正整数n,都有Tn-2n∈[a,b],
∴∴a≤
,b≥3,
∴b-a的最小值=3-
=
.
| Sn+1 |
| n+1 |
| Sn |
| n |
| 1 |
| 2 |
| Sn |
| n |
| 1 |
| 2 |
| Sn |
| n |
| 1 |
| 2 |
∴Sn=
| n(n+1) |
| 2 |
| n(n-1) |
| 2 |
| n(n+1) |
| 2 |
| n(n-1) |
| 2 |
∵数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),∴数列{bn}是等差数列,设公差为d,∵前9项和为63,∴
| 9(b1+b9) |
| 2 |
∴d=
| b5-b3 |
| 2 |
因此:an=n,bn=n+2.
(2)cn=
| bn |
| an |
| an |
| bn |
| n+2 |
| n |
| n |
| n+2 |
| 1 |
| n |
| 1 |
| n+2 |
∴数列{cn}的前n项和为Tn=2n+2[(1-
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=2n+2(1+
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=3+2n-2(
| 1 |
| n+1 |
| 1 |
| n+2 |
∴Tn-2n=3-2(
| 1 |
| n+1 |
| 1 |
| n+2 |
设An=3-2(
| 1 |
| n+1 |
| 1 |
| n+2 |
∵An+1-An=3-2(
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n+1 |
| 1 |
| n+3 |
∴数列{An}单调递增,
∴(An)min=A1=
| 4 |
| 3 |
而An<3,
∴
| 4 |
| 3 |
∵对任意正整数n,都有Tn-2n∈[a,b],
∴∴a≤
| 4 |
| 3 |
∴b-a的最小值=3-
| 4 |
| 3 |
| 5 |
| 3 |
点评:本题考查了递推式的应用、等差数列的通项公式及前n项和公式及其性质、“裂项求和”、数列的单调性,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目
已知集合M={0,1,2},N={x},若M∪N={0,1,2,3},则x的值为( )
| A、3 | B、2 | C、1 | D、0 |
下列命题中的假命题是( )
| A、?x∈R,lnx=0 |
| B、?x∈R,sinx+cosx=1 |
| C、?x∈R,x3>0 |
| D、?x∈R,3x>0 |
已知实数x,y满足
,则z=x-y的最小值为( )
|
| A、1 | B、-1 | C、2 | D、-2 |