题目内容
已知集合A={x|x=a+b
,a,b∈Q},若x1,x2∈A
(1)试问x1x2,
是否属于A;
(2)若B={x|x=a+b
,a,b∈Z},试问x1x2,
是否属于B,为什么?
| 2 |
(1)试问x1x2,
| x1 |
| x2 |
(2)若B={x|x=a+b
| 2 |
| x1 |
| x2 |
考点:元素与集合关系的判断
专题:集合
分析:(1)根据x1,x2∈A,集合A={x|x=a+b
,a,b∈Q},可设x1=a1+b1
,x2=a2+b2
,(a1,a2,b1,b2∈Q),分别求了x1x2,
,再根据A中集合元素特征可得答案.
(1)根据x1,x2∈B,集合A={x|x=a+b
,a,b∈Z},可设x1=a1+b1
,x2=a2+b2
,(a1,a2,b1,b2∈Z),分别求了x1x2,
,再根据B集合元素特征可得答案.
| 2 |
| 2 |
| 2 |
| x1 |
| x2 |
(1)根据x1,x2∈B,集合A={x|x=a+b
| 2 |
| 2 |
| 2 |
| x1 |
| x2 |
解答:
解:(1)∵x1,x2∈A,集合A={x|x=a+b
,a,b∈Q},
∴设x1=a1+b1
,x2=a2+b2
,(a1,a2,b1,b2∈Q),
则x1x2=a1a2+2b1b2+(a1b2+a2b1)
,
∵a1a2+2b1b2∈Q,a1b2+a2b1∈Q,
∴x1x2∈A;
=
+
,
∵
∈Q,
∈Q,
∴
∈A.
(2)∵x1,x2∈B,集合B={x|x=a+b
,a,b∈Z},
∴设x1=a1+b1
,x2=a2+b2
,(a1,a2,b1,b2∈Z),
则x1x2=a1a2+2b1b2+(a1b2+a2b1)
,
∵a1a2+2b1b2∈Z,a1b2+a2b1∈Z,
∴x1x2∈B;
=
+
,
∵
∈Z,
∈Z不一定成立
∴
∈B不一定成立.
| 2 |
∴设x1=a1+b1
| 2 |
| 2 |
则x1x2=a1a2+2b1b2+(a1b2+a2b1)
| 2 |
∵a1a2+2b1b2∈Q,a1b2+a2b1∈Q,
∴x1x2∈A;
| x1 |
| x2 |
| a1a2-2b1b2 | ||||
|
| a2b1-a1b2 | ||||
|
| 2 |
∵
| a1a2-2b1b2 | ||||
|
| a2b1-a1b2 | ||||
|
∴
| x1 |
| x2 |
(2)∵x1,x2∈B,集合B={x|x=a+b
| 2 |
∴设x1=a1+b1
| 2 |
| 2 |
则x1x2=a1a2+2b1b2+(a1b2+a2b1)
| 2 |
∵a1a2+2b1b2∈Z,a1b2+a2b1∈Z,
∴x1x2∈B;
| x1 |
| x2 |
| a1a2-2b1b2 | ||||
|
| a2b1-a1b2 | ||||
|
| 2 |
∵
| a1a2-2b1b2 | ||||
|
| a2b1-a1b2 | ||||
|
∴
| x1 |
| x2 |
点评:本题考查的知识点是元素与集合关系的判断,熟练掌握集合中元素满足的特征是解答的关键.
练习册系列答案
相关题目
在△ABC中,已知sin2A+sin2B+sin2C=2,则△ABC为( )
| A、等腰三角形 |
| B、等边三角形 |
| C、直角三角形 |
| D、等腰直角三角形 |