题目内容
12.已知正项数列{an}的前n项和为Sn,且满足Sn=2an-1$\frac{1}{2}$.(1)证明:数列{an}是等比数列;
(2)设bn=log2an+2,求数列{$\frac{1}{{{b}_{n}b}_{n+1}}$}的前n项和Tn.
分析 (1)分n=1与n≥2讨论,从而化简可得an=2an-1,从而证明;
(2)由(1)知,an=$\frac{3}{2}$•2n-1,从而化简bn=log2an+2=$lo{{g}_{2}}^{3}$+n,从而利用裂项求和法求其前n项和.
解答 解:(1)证明:当n=1时,a1=2a1-1$\frac{1}{2}$,
故a1=1$\frac{1}{2}$,
当n≥2时,Sn=2an-1$\frac{1}{2}$,Sn-1=2an-1-1$\frac{1}{2}$;
an=2an-2an-1,
故an=2an-1,
故数列{an}是以1$\frac{1}{2}$为首项,2为公比的等比数列;
(2)由(1)知,an=$\frac{3}{2}$•2n-1,
an+2=$\frac{3}{2}$•2n+1=3•2n,
故bn=log2an+2=$lo{{g}_{2}}^{3}$+n,
故$\frac{1}{{{b}_{n}b}_{n+1}}$=$\frac{1}{(lo{g}_{2}3+n)(lo{g}_{2}3+n+1)}$
=$\frac{1}{lo{g}_{2}3+n}$-$\frac{1}{lo{g}_{2}3+n+1}$,
故Tn=($\frac{1}{lo{g}_{2}3+1}$-$\frac{1}{lo{g}_{2}3+2}$)+($\frac{1}{lo{g}_{2}3+2}$-$\frac{1}{lo{g}_{2}3+3}$)+…+($\frac{1}{lo{g}_{2}3+n}$-$\frac{1}{lo{g}_{2}3+n+1}$)
=$\frac{1}{lo{g}_{2}3+1}$-$\frac{1}{lo{g}_{2}3+n+1}$.
点评 本题考查了分类讨论的思想应用及裂项求和法的应用,属于中档题.