题目内容
已知函数f(x)=ax4+bx3+cx2+dx+e,(a,b,c,d,e∈R,且a≠0)的四个零点构成公差为2的等差数列,则f′(x)的所有零点中最大值与最小值之差是( )
| A、4 | ||
B、
| ||
| C、2 | ||
D、2
|
考点:等差数列的性质,函数零点的判定定理
专题:函数的性质及应用,导数的概念及应用
分析:由于四次多项式f(x)的四个实根构成公差为2的等差数列,不妨设四个实根为-1,-3,1,3.再对函数求导,求导函数的根,计算即可.
解答:
解:不妨设f(x)=a(x-3)(x-1)(x+1)(x+3)=a(x4-10x2+9),
则f′(x)=4ax(x-
)(x+
),所以,最大根与最小根之差为2
.
故选D.
则f′(x)=4ax(x-
| 5 |
| 5 |
| 5 |
故选D.
点评:本题主要考查了导数的运算,考查等差数列,将原函数设出来是做题的关键.
练习册系列答案
相关题目
已知x∈R,符号[x]表示不超过x的最大整数,若函数f(x)=
-a(x>0)有且仅有3个零点,则a的取值范围是( )
| [x] |
| x |
A、(
| ||||
B、[
| ||||
C、(
| ||||
D、[
|
已知圆C1:(x+2)2+(y-2)2=2,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为( )
| A、(x+3)2+(y-3)2=2 |
| B、(x-1)2+(y+1)2=2 |
| C、(x-2)2+(y+2)2=2 |
| D、(x-3)2+(y+3)2=2 |