题目内容

已知函数f(x)=log4(4x+1)+kx(x∈R)的图象关于y轴对称.
(1)求k的值;
(2)若函数y=f(x)的图象与直线y=
1
2
x+b没有交点,求实数b的取值范围.
(3)设g(x)=log4(a•2x-a•m),当m取任意正数时,是否存在实数a,使得函数f(x)与 g(x)的图象有且只有一个公共点?若存在,求实数a的取值范围;若不存在,请说明理由.
考点:函数与方程的综合运用
专题:函数的性质及应用
分析:(1)根据偶函数可知f(x)=f(-x),取x=-1代入即可求出k的值;
(2)由(1)中结论,可以得到函数的解析式,构造函数y=log4(4x+1)-x,分析出函数的单调性及值域,根据函数零点的判定方法,我们易确定b取不同值时,函数零点个数,进而得到答案.
(3)函数f(x)与g(x)的图象有且只有一个公共点,则方程f(x)=g(x)有且只有一个实根,化简可得 2x+
1
2x
=a•2x-a•m,有且只有一个实根,令t=2x>0,则转化才方程 (a-1)t2-amt-1=0,有且只有一个正根,讨论a=1,以及△=0与一个正根和一个负根,三种情形,即可求出实数a的取值范围.
解答: 解:(1)∵f(x)=log4(4x+1)+kx(k∈R)的图象关于y轴对称.
∴函数f(x)是偶函数.
∴f(-x)=f(x)
即log4(4-x+1)-kx=log4(4x+1)+kx
即log4(4x+1)-(k+1)x=log4(4x+1)+kx
即2k+1=0
∴k=-
1
2

证明:(2)由(1)得f(x)=log4(4x+1)-
1
2
x,
令y=log4(4x+1)-x-b
由于y=log4(4x+1)-x-b为减函数,且恒为正,
故当b>0时,y=log4(4x+1)-x-b有唯一的零点,此时函数y=f(x)的图象与直线y=
1
2
x+b有一个交点,
当b≤0时,y=log4(4x+1)-x-b没有零点,此时函数y=f(x)的图象与直线y=
1
2
x+b没有交点,
综上所述,b≤0时,函数y=f(x)的图象与直线y=
1
2
x+b没有交点;
(3)∵g(x)=log4(a•2x-a•m),∴a≠0,
函数f(x)与g(x)的图象有且只有一个公共点
即方程 log4(4x+1)-
1
2
x=log4(a•2x-a•m),有且只有一个实根,
化简得:方程 2x+
1
2x
=a•2x-a•m有且只有一个实根,
令t=2x>0,m=
4
3
,则方程 t+
1
t
=at-am,即(a-1)t2-
4
3
at-1=0,有且只有一个正根,
①当a=1时,t=-
3
4
<0,不合题意;
②当a≠1时,△=0⇒a=
3
4
或-3,
若a=
3
4
,则t=-
1
2
,不合题意;若a=-3,则t=
1
2
成立,
③若一个正根和一个负根,则
-1
a-1
<0,即a>1时,满足题意.
所以实数a的取值范围为{a|a>1或a=-3}.
点评:本题主要考查了偶函数的性质,以及对数函数图象与性质的综合应用,同时考查了分类讨论的思想,由于综合考查了多个函数的难点,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网