题目内容
在正方体中,既与也与共面的棱的条数为
5
直线和直线平行,则的值为 .
已知集合,,且,则实数的值是 .
已知函数(为常数),其图象是曲线.
(1)当时,求函数的单调减区间;
(2)设函数的导函数为,若存在唯一的实数,使得与同时成立,求实数的取值范围;
(3)已知点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线,设切线的斜率分别为.问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.
已知点,,动点满足.
(1)求动点的轨迹的方程;
(2)在直线:上取一点,过点作轨迹的两条切线,切点分别为.问:是否存在点,使得直线//?若存在,求出点的坐标;若不存在,请说明理由.
双曲线的中心在原点,焦点在Y轴上,焦距为16,一条渐近线方程为,则双曲线方程为
已知一种圆锥型金属铸件的高为,底面半径为,现要将它切割为圆柱体模型(如图所示),并要求圆柱的体积最大,求圆柱的最大体积及此时圆柱的底面半径和高
已知f(x)是定义在上的奇函数,当时,,若函数f(x)在区间[-1,t]上的最小值为-1,则实数t的取值范围是 .
为椭圆上的点,是其两个焦点,若,则的面积
是 .