题目内容
已知
=(m,2),
=(2,3),若
⊥
,则实数m的值是( )
| a |
| b |
| a |
| b |
| A、-2 | ||
| B、3 | ||
C、
| ||
| D、-3 |
考点:平面向量数量积的运算
专题:平面向量及应用
分析:向量垂直,数量积为0,得到关于m的等式解之.
解答:
解:
=(m,2),
=(2,3),因为
⊥
,所以
•
=2m+6=0,解得m=-3;
故选:D.
| a |
| b |
| a |
| b |
| a |
| b |
故选:D.
点评:本题考查了由向量垂直求参数;利用向量垂直数量积为0,的方程解之即可.
练习册系列答案
相关题目
若函数f(x)=x2+bx+1在区间(0,1)和(1,2)上各有一个零点,则b的取值范围是( )
| A、(-∞,-2) | ||
B、(-
| ||
C、(-
| ||
D、(-∞,-
|
已知函数f(x)=
为偶函数,则括号内应该填写的是( )
|
| A、x2+3x-2 |
| B、x2-3x-2 |
| C、-x2+3x-2 |
| D、-x2+3x+2 |
已知双曲线
-
=1的焦点到其渐近线的距离等于2,抛物线y2=2px的焦点为双曲线的右焦点,双曲线截抛物线的准线所得的线段长为4,则抛物线方程为( )
| x2 |
| a2 |
| y2 |
| b2 |
| A、y2=4x | ||
B、y2=4
| ||
C、y2=8
| ||
| D、y2=8x |
已知等比数列{an}的前n项和为Sn,且满足
=2,则公比q=( )
| S8 |
| S4 |
| A、±2 | B、±1 | C、-1 | D、1 |