ÌâÄ¿ÄÚÈÝ

13£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÓëyÖáµÄÕý°ëÖáÏཻÓÚµãM£¬µãF1£¬F2ΪÍÖÔ²µÄ½¹µã£¬ÇÒ¡÷MF1F2ÊDZ߳¤Îª2µÄµÈ±ßÈý½ÇÐΣ¬ÈôÖ±Ïßl£ºy=kx+2$\sqrt{3}$ÓëÍÖÔ²E½»ÓÚ²»Í¬µÄÁ½µãA¡¢B£®
£¨1£©Ö±ÏßMA£¬MBµÄбÂÊÖ®»ýÊÇ·ñΪ¶¨Öµ£»ÈôÊÇ£¬ÇëÇó³ö¸Ã¶¨Öµ£®Èô²»ÊÇ£®Çë˵Ã÷ÀíÓÉ£®
£¨2£©Çó¡÷ABMµÄÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÓÉÍÖÔ²ÓëyÖáµÄÕý°ëÖáÏཻÓÚµãM£¬µãF1£¬F2ΪÍÖÔ²µÄ½¹µã£¬ÇÒ¡÷MF1F2ÊDZ߳¤Îª2µÄµÈ±ßÈý½ÇÐΣ¬Çó³öÍÖÔ²E£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£®M£¨0£¬$\sqrt{3}$£©£®ÁªÁ¢$\left\{\begin{array}{l}{y=kx+2\sqrt{3}}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬µÃ£¨4k2+3£©x2+16$\sqrt{3}kx$+36=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢Ö±ÏßµÄбÂʹ«Ê½ÄÜÇó³öÖ±ÏßMA£¬MBµÄбÂÊÖ®»ýΪ¶¨Öµ£®
£¨2£©ÀûÓÃÏÒ³¤¹«Ê½¡¢µãµ½Ö±Ïß¾àÀ빫ʽ¡¢»ù±¾²»µÈʽ£¬ÄÜÇó³ö¡÷ABMµÄÃæ»ýµÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÓëyÖáµÄÕý°ëÖáÏཻÓÚµãM£¬µãF1£¬F2ΪÍÖÔ²µÄ½¹µã£¬ÇÒ¡÷MF1F2ÊDZ߳¤Îª2µÄµÈ±ßÈý½ÇÐΣ¬
¡àa=2£¬c=1£¬¡àb2=4-1=3£¬
¡àÍÖÔ²E£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£®¡àM£¨0£¬$\sqrt{3}$£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+2\sqrt{3}}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬µÃ£¨4k2+3£©x2+16$\sqrt{3}kx$+36=0£¬
¡÷=$£¨16\sqrt{3}k£©^{2}-4¡Á36£¨4{k}^{2}+3£©$£¾0£¬½âµÃk£¾1.5»òk£¼-1.5£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò${x}_{1}+{x}_{2}=-\frac{16\sqrt{3}k}{4{k}^{2}+3}$£¬${x}_{1}{x}_{2}=\frac{36}{4{k}^{2}+3}$£¬
kMA•kMB=$\frac{{y}_{1}-\sqrt{3}}{{x}_{1}}•\frac{{y}_{2}-\sqrt{3}}{{x}_{2}}$=$\frac{{k}^{2}{x}_{1}{x}_{2}+\sqrt{3}k£¨{x}_{1}+{x}_{2}£©+3}{{x}_{1}{x}_{2}}$
=$\frac{\frac{36{k}^{2}}{4{k}^{2}+3}-\frac{48{k}^{2}}{4{k}^{2}+3}+3}{\frac{36}{4{k}^{2}+3}}$
=$\frac{48{k}^{2}-48{k}^{2}+9}{36}$=$\frac{1}{4}$£®
¡àÖ±ÏßMA£¬MBµÄбÂÊÖ®»ýΪ¶¨Öµ$\frac{1}{4}$£®
£¨2£©|AB|=$\sqrt{£¨1+{k}^{2}£©[£¨-\frac{16\sqrt{3}k}{4{k}^{2}+3}£©^{2}-4¡Á\frac{36}{4{k}^{2}+3}]}$=$\frac{4}{4{k}^{2}+3}$$\sqrt{3£¨1+{k}^{2}£©£¨4{k}^{2}-9£©}$£¬
M£¨0£¬$\sqrt{3}$£©µ½Ö±Ïßl£ºy=kx+2$\sqrt{3}$µÄ¾àÀëd=$\frac{\sqrt{3}}{\sqrt{{k}^{2}+1}}$£¬
¡à¡÷ABMµÄÃæ»ýS¡÷ABM=$\frac{1}{2}¡Ád¡Á|AB|$=$\frac{1}{2}¡Á\frac{\sqrt{3}}{\sqrt{{k}^{2}+1}}$¡Á$\frac{4}{4{k}^{2}+3}$$\sqrt{3£¨1+{k}^{2}£©£¨4{k}^{2}-9£©}$
=$\frac{6\sqrt{4{k}^{2}-9}}{4{k}^{2}+3}$=$\frac{6}{\sqrt{4{k}^{2}-9}+\frac{12}{\sqrt{4{k}^{2}-9}}}$¡Ü$\frac{6}{2\sqrt{12}}$=$\frac{\sqrt{3}}{2}$£¬
µ±ÇÒ½öµ±$\sqrt{4{k}^{2}-9}$=$\frac{12}{\sqrt{4{k}^{2}-9}}$£¬¼´k2=$\frac{21}{4}$ʱ£¬¡÷ABMµÄÃæ»ýÈ¡×î´óÖµ$\frac{\sqrt{3}}{2}$£®

µãÆÀ ±¾Ì⿼²éÁ½Ö±ÏßµÄбÂÊÖ®»ýÊÇ·ñΪ¶¨ÖµµÄÅжÏÓëÇ󷨣¬¿¼²éÈý½ÇÐεÄÃæ»ýµÄ×î´óÖµµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¸ùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢Ö±ÏßµÄбÂʹ«Ê½¡¢ÏÒ³¤¹«Ê½¡¢µãµ½Ö±Ïß¾àÀ빫ʽ¡¢»ù±¾²»µÈʽµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø