题目内容

如图,三棱柱ABC-A1B1C1,A1A⊥底面ABC为正三角形,D为AC中点.
(1)求证:直线AB1∥平面BC1D;
(2)求证:平面BC1D⊥平面ACC1A1
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)连接B1C交BC1于点O,连接OD,则点O为B1C的中点.可得DO为△AB1C中位线,A1B∥OD,结合线面平行的判定定理,得A1B∥平面BC1D;
(2)由AA1⊥底面ABC,得AA1⊥BD.正三角形ABC中,中线BD⊥AC,结合线面垂直的判定定理,得BD⊥平面ACC1A1,最后由面面垂直的判定定理,证出平面BC1D⊥平面ACC1A;
解答: (1)证明:连接B1C交BC1于点O,连接OD,则点O为B1C的中点.
∵D为AC中点,得DO为△AB1C中位线,
∴A1B∥OD.
∵OD?平面AB1C,A1B?平面AB1C,
∴直线AB1∥平面BC1D;
(2)证明:∵AA1⊥底面ABC,
∴AA1⊥BD,
∵底面ABC正三角形,D是AC的中点
∴BD⊥AC
∵AA1∩AC=A,∴BD⊥平面ACC1A1
∵BD?平面BC1D,∴平面BC1D⊥平面ACC1A;
点评:本题考查了直三棱柱的性质,求证线面平行、面面垂直,着重考查了空间线面平行、线面垂直的判定与性质,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网