题目内容
若幂函数f(x)是偶函数,且在(0,+∞)上是减函数,幂指数是绝对值最小的整数,则f(x)= .
考点:幂函数的性质
专题:函数的性质及应用
分析:设出幂函数f(x)=xα(α∈R),根据幂函数的图象与性质,求出α的值即可.
解答:
解:设幂函数f(x)=xα(α∈R),
∵f(x)是偶函数,∴α是偶数;
又∵f(x)在(0,+∞)上是减函数,∴α<0;
又∵幂指数是绝对值最小的整数,
∴α=-2;
∴f(x)=x-2.
故答案为:x-2.
∵f(x)是偶函数,∴α是偶数;
又∵f(x)在(0,+∞)上是减函数,∴α<0;
又∵幂指数是绝对值最小的整数,
∴α=-2;
∴f(x)=x-2.
故答案为:x-2.
点评:本题考查了幂函数的图象与性质的应用问题,是基础题目.
练习册系列答案
相关题目
近期由于雨雪天气,路况不好,某人驾车遇到紧急情况而刹车,以速度v(t)=7-3t+
(t为时间单位s)行驶至停止.在此期间汽车继续行驶的距离(单位;m)是( )
| 25 |
| 1+t |
| A、1+25ln5 | ||
| B、4+25ln5 | ||
C、8+25ln
| ||
| D、4+50ln2 |
为了得到凼数y=lgx的图象,只需把凼数y=lg
的图象上所有的点( )
| x-3 |
| 10 |
| A、向左平移3个单位长度,再向上平移1个单位长度 |
| B、向右平移3个单位长度,再向上平移1个单位长度 |
| C、向左平移3个单位长度,再向下平移1个单位长度 |
| D、向右平移3个单位长度,再向下平移1个单位长度 |
设集合A={x||x-1|≤1},B={x|x2-1≤1},则A∪B=( )
A、[-
| ||||
B、[-
| ||||
C、[0,
| ||||
D、[-
|
设集合A={x|-2≤x≤3},B={x|x+1>0},则集合A∩B等于( )
| A、{x|-2≤x≤-1} |
| B、{x|-2≤x<-1} |
| C、{x|-1<x≤3} |
| D、{x|1<x≤3} |