题目内容
已知函数f(x)=
(Ⅰ)分别求f(2)+f(
),f(3)+f(
),f(4)+f(
) 的值;
(Ⅱ)归纳猜想一般性结论,并给出证明;
(Ⅲ)求值:2f(2)+2f(3)+…+2f(2014)+f(
)+f(
)+…+f(
)+
f(2)+
f(3)+…+
f(2014).
| x2 |
| 1+x2 |
(Ⅰ)分别求f(2)+f(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
(Ⅱ)归纳猜想一般性结论,并给出证明;
(Ⅲ)求值:2f(2)+2f(3)+…+2f(2014)+f(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2014 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 20142 |
考点:函数的值
专题:综合题,函数的性质及应用
分析:(Ⅰ)代入解析式可分别求得结果;
(Ⅱ)由(Ⅰ)猜想f(x)+f(
)=1,代入解析式可证明;
(Ⅲ)可得f(x)+
f(x)=
(1+
)=1,再由(Ⅱ)得f(x)+f(
)=1,对目标式分组求和即可;
(Ⅱ)由(Ⅰ)猜想f(x)+f(
| 1 |
| x |
(Ⅲ)可得f(x)+
| 1 |
| x2 |
| x2 |
| 1+x2 |
| 1 |
| x2 |
| 1 |
| x |
解答:
解:(Ⅰ)∵f(x)=
,
∴f(2)+f(
)=
+
=
+
=1,
同理可得f(3)+f(
)=1,f(4)+f(
)=1.
(Ⅱ)由(Ⅰ)猜想f(x)+f(
)=1,
证明:f(x)+f(
)=
+
=
+
=1.
(Ⅲ)∵f(x)+
f(x)=
(1+
)=1,由(Ⅱ)得f(x)+f(
)=1,
则2f(2)+2f(3)+…+2f(2014)+f(
)+f(
)+…+f(
)+
f(2)+
f(3)+…+
f(2014)
=[f(2)+f(
)+f(2)+
f(2)]+[f(3)+f(
)+
f(3)]+[f(2014+f(
)+f(2014)+
f(2014)]
=
=4026.
| x2 |
| 1+x2 |
∴f(2)+f(
| 1 |
| 2 |
| 22 |
| 1+22 |
(
| ||
1+(
|
| 22 |
| 1+22 |
| 1 |
| 1+22 |
同理可得f(3)+f(
| 1 |
| 3 |
| 1 |
| 4 |
(Ⅱ)由(Ⅰ)猜想f(x)+f(
| 1 |
| x |
证明:f(x)+f(
| 1 |
| x |
| x2 |
| 1+x2 |
(
| ||
1+(
|
| x2 |
| 1+x2 |
| 1 |
| 1+x2 |
(Ⅲ)∵f(x)+
| 1 |
| x2 |
| x2 |
| 1+x2 |
| 1 |
| x2 |
| 1 |
| x |
则2f(2)+2f(3)+…+2f(2014)+f(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2014 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 20142 |
=[f(2)+f(
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 2014 |
| 1 |
| 20142 |
=
| ||
| 2013个2 |
点评:该题考查函数的性质、函数值的求解,考查学生的运算求解能力,属中档题.
练习册系列答案
相关题目