题目内容
已知数列{an}的前n项和为Sn=2an-1,数列{bn}满足b1=3,bn+1=an+bn(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn;
(3)是否存在非零实数k,使得数列{kTn+k2an}为等差数列,证明你的结论.
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn;
(3)是否存在非零实数k,使得数列{kTn+k2an}为等差数列,证明你的结论.
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(1)n=1时,a1=S1=2a1-1,解得a1=1.n≥2时,an=Sn-Sn-1=2an-1-2an-1+1,an=2an-1,从而{an}是以1为首项,2为公比的等比数列,由此求出an=2n-1.
(2)由已知得bn+1-bn=an=2n-1,由此能求出数列{bn}的前n项和Tn.
(3)设cn=kTn+k2an=(k+
k2)•2n+k(2n-1),从而cn+1-cn=(k+
k2)•2n+2k,由此能求出存在实数k=-2,使得数列{kTn+k2an}为首项为-2,公差为-4的等差数列.
(2)由已知得bn+1-bn=an=2n-1,由此能求出数列{bn}的前n项和Tn.
(3)设cn=kTn+k2an=(k+
| 1 |
| 2 |
| 1 |
| 2 |
解答:
解:(1)∵数列{an}的前n项和为Sn=2an-1,
∴n=1时,a1=S1=2a1-1,解得a1=1.
n≥2时,an=Sn-Sn-1=2an-1-2an-1+1,
∴an=2an-1,
∴
=2.
∴{an}是以1为首项,2为公比的等比数列,
∴an=2n-1.
(2)∵数列{bn}满足b1=3,bn+1=an+bn(n∈N*),
∴bn+1-bn=an=2n-1,
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)
=3+1+2+22+…+2n-2
=3+
=2n-1+2.
∴Tn=1+2+4+…+2n-1+2n
=
+2n
=2n+2n-1.
(3)设cn=kTn+k2an
=k•2n+k(2n-1)+k2•2n-1
=(k+
k2)•2n+k(2n-1),
∵cn+1-cn=(k+
k2)•2n+2k,
∴若存在非零实数k,使得数列{kTn+k2an}为等差数列
则k+
k2=0,∵k≠0,∴k=-2,
∴c1=-2(2-1)=-2,cn+1-cn=-4,
∴存在实数k=-2,使得数列{kTn+k2an}为首项为-2,公差为-4的等差数列.
∴n=1时,a1=S1=2a1-1,解得a1=1.
n≥2时,an=Sn-Sn-1=2an-1-2an-1+1,
∴an=2an-1,
∴
| an |
| an-1 |
∴{an}是以1为首项,2为公比的等比数列,
∴an=2n-1.
(2)∵数列{bn}满足b1=3,bn+1=an+bn(n∈N*),
∴bn+1-bn=an=2n-1,
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)
=3+1+2+22+…+2n-2
=3+
| 1-2n-1 |
| 1-2 |
=2n-1+2.
∴Tn=1+2+4+…+2n-1+2n
=
| 1-2n |
| 1-2 |
=2n+2n-1.
(3)设cn=kTn+k2an
=k•2n+k(2n-1)+k2•2n-1
=(k+
| 1 |
| 2 |
∵cn+1-cn=(k+
| 1 |
| 2 |
∴若存在非零实数k,使得数列{kTn+k2an}为等差数列
则k+
| 1 |
| 2 |
∴c1=-2(2-1)=-2,cn+1-cn=-4,
∴存在实数k=-2,使得数列{kTn+k2an}为首项为-2,公差为-4的等差数列.
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,考查是否存在非零实数k,使得数列{kTn+k2an}为等差数列的判断与求法,解题时要注意构造法的合理运用.
练习册系列答案
相关题目