题目内容
11.已知函数f(x)=-|x-2|.(1)求不等式f(x)>-|x+4|的解集;
(2)若|m-1|-|x|>f(x)对x∈R恒成立,求m的取值范围.
分析 (1)问题转化为|x-2|<|x+4|,两边平方解得即可;(2)问题转化为|m-1|>|x|-|x-2|,求出|x|-|x-2|的最大值是|x-x+2|=2,得到|m-1|>2,解出即可.
解答 解:(1)∵f(x)>-|x+4|,
即-|x-2|>-|x+4|,
即|x-2|<|x+4|,
即(x-2)2<(x+4)2,
解得:x>-1,
故不等式的解集是{x|x>-1};
(2)若|m-1|-|x|>f(x)对x∈R恒成立,
即|m-1|>|x|-|x-2|,
而|x|-|x-2|的最大值是|x-x+2|=2,
故|m-1|>2,解得:m>3或m<-1.
点评 本题考查了解绝对值不等式问题,考查转化思想,是一道中档题.
练习册系列答案
相关题目
2.已知m,n表示两条不同的直线,α、β表示两个不同的平面,下列命题中正确的是( )
| A. | 若m⊥α,m∥n,n?β,则α⊥β | B. | 若平面α⊥β,m⊥α,则m⊥β | ||
| C. | 若m∥α,α∥β,则m∥β | D. | 若直线m∥n,n?α,则m∥α |
19.已知F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1的左右焦点,G是C上一点,且满足$\frac{|G{F}_{1}|}{|G{F}_{2}|}$=9 则C的离心率的取值范围是( )
| A. | (1,$\frac{\sqrt{5}}{2}$) | B. | (1,$\frac{\sqrt{5}}{2}$] | C. | (1,$\frac{5}{4}$) | D. | (1,$\frac{5}{4}$] |
6.用数字0,l,2,3,4,5六个数字可以组成无重复的三位数的个数为( )
| A. | 216 | B. | 100 | C. | 120 | D. | 180 |
9.已知A(-1,1),B(1,2),C(-2,-1),D(3,4),则$\overrightarrow{AB}$在$\overrightarrow{CD}$方向上的投影为( )
| A. | $\frac{{3\sqrt{2}}}{2}$ | B. | $\frac{{3\sqrt{15}}}{2}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $-\frac{{3\sqrt{15}}}{2}$ |