ÌâÄ¿ÄÚÈÝ
5£®ÏÂÁÐ˵·¨ÕýÈ·µÄÓУ¨¡¡¡¡£©£¨1£©{an}ºÍ{bn}¶¼ÊǵȲîÊýÁУ¬Ôò{an+bn}ΪµÈ²îÊýÁÐ
£¨2£©{an}ÊǵȲîÊýÁУ¬Ôòam£¬am+k£¬am+2k£¬am+3k£¬¡£¨k£¬m¡ÊN+£©ÎªµÈ²îÊýÁÐ
£¨3£©Èô{an}ΪµÈ±ÈÊýÁУ¬ÆäÖÐan£¾0£¬Ôò{lgan}ΪµÈ²îÊýÁУ»Èô{an}ΪµÈ²îÊýÁУ¬Ôò$\{{2^{a_n}}\}$ΪµÈ±ÈÊýÁУ®
£¨4£©Èô{an}ΪµÈ±ÈÊýÁУ¬Ôò$\{a_n^2\}$£¬{|an|}¶¼ÎªµÈ±ÈÊýÁУ®
| A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
·ÖÎö ÀûÓõȲîÊýÁÐÒÔ¼°µÈ±ÈÊýÁеÄÐÔÖÊÅжϼ´¿É£®
½â´ð ½â£º£¨1£©{an}ºÍ{bn}¶¼ÊǵȲîÊýÁУ¬Ôò{an+bn}ΪµÈ²îÊýÁУ¬ÕýÈ·£¬{an+bn}µÄÊ×ÏîΪ£ºa1+b1£¬¹«²îΪ£ºÔÊýÁеĹ«²îµÄºÍ£®
£¨2£©{an}ÊǵȲîÊýÁУ¬Ôòam£¬am+k£¬am+2k£¬am+3k£¬¡£¨k£¬m¡ÊN+£©ÎªµÈ²îÊýÁУ¬ÕýÈ·£¬ÔÊýÁеĹ«²îΪd£¬ÔòÐÂÊýÁÐÖУºam+k=am+kd£®¿ÉµÃ2am+k=am+am+2k£¬2am+2k=am+k+am+2k£¬ËùÒÔÊýÁÐÊǵȲîÊýÁУ®
£¨3£©Èô{an}ΪµÈ±ÈÊýÁУ¬ÆäÖÐan£¾0£¬Ôò{lgan}ΪµÈ²îÊýÁУ»Èô{an}ΪµÈ²îÊýÁУ¬Ôò$\{{2^{a_n}}\}$ΪµÈ±ÈÊýÁУ®ÓÉÖ¸Êýº¯ÊýÓë¶ÔÊýʽµÄÔËËã·¨Ôò¿ÉÖª£¬ÅжÏÊÇÕýÈ·µÄ£»
£¨4£©Èô{an}ΪµÈ±ÈÊýÁУ¬Ôò$\{a_n^2\}$£¬{|an|}¶¼ÎªµÈ±ÈÊýÁУ®ÕýÈ·£¬ÐÂÊýÁеĹ«±È·Ö±ðΪÔÊýÁй«±ÈµÄƽ·½ºÍ¹«±ÈµÄ¾ø¶ÔÖµ£®
¹ÊÑ¡£ºD£®
µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁÐÒÔ¼°µÈ±ÈÊýÁеļòµ¥ÐÔÖʵÄÓ¦Óã¬ÊÇ»ù±¾ÖªÊ¶µÄ¿¼²é£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
10£®ÒÑÖªa£¾b£¬ÏÂÁйØÏµÊ½ÖÐÒ»¶¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | a2£¼b2 | B£® | 2a£¼2b | C£® | a+2£¼b+2 | D£® | -a£¼-b |
17£®ÔÚ¡÷ABCÖУ¬Èý¸öÄÚ½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðÊÇa¡¢b¡¢c£¬ÇÒa¡¢1-b¡¢c³ÉµÈ²îÊýÁУ¬sinA¡¢sinB¡¢sinC³ÉµÈ±ÈÊýÁУ¬ÔòbµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | $£¨-¡Þ£¬\frac{2}{3}£©$ | B£® | $£¨-¡Þ£¬\frac{1}{2}]$ | C£® | $£¨0£¬\frac{2}{3}£©$ | D£® | $£¨0£¬\frac{1}{2}]$ |