题目内容
设公差d≠0的等差数列{an}的首项为1,且a2,a5,a14构成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
(n∈N*),求数列{an•bn}的前n项和Tn;
(Ⅲ)若数列{bn}满足
+
+…+
=1-
(n∈N*),求{bn}的前n项和Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
| 1 |
| 2n |
(Ⅲ)若数列{bn}满足
| b1 |
| a1 |
| b2 |
| a2 |
| bn |
| an |
| 1 |
| 2n |
考点:数列的求和,等比数列的通项公式
专题:等差数列与等比数列
分析:(Ⅰ)写出等差数列的通项公式后直接由a2,a5,a14构成等比数列列式求解;
(Ⅱ)直接利用错位相减法求数列{an•bn}的前n项和Tn;
(Ⅲ)把an=2n-1代入
+
+…+
=1-
,取n=n-1得另一递推式,作差后求出{bn}的通项公式,由(Ⅱ)可得答案.
(Ⅱ)直接利用错位相减法求数列{an•bn}的前n项和Tn;
(Ⅲ)把an=2n-1代入
| b1 |
| a1 |
| b2 |
| a2 |
| bn |
| an |
| 1 |
| 2n |
解答:
解:(Ⅰ)∵a1=1,∴a2=1+d,a5=1+4d,a14=1+13d.
由a2,a5,a14构成等比数列,得(1+4d)2=(1+d)(1+13d),解得d=0(舍)或d=2.
∴an=2n-1;
(Ⅱ)由an=2n-1,bn=
,得an•bn=
.
∴Tn=a1b1+a2b2+…+anbn
=
+
+…+
+
①
Tn=
+
+…+
+
②
①-②得:
Tn=
+
+
+
+…+
-
=
+
-
=
-
-
.
∴Tn=3-
;
(Ⅲ)由an=2n-1,
+
+…+
=1-
,得
b1+
b2+
b3+…+
bn=1-
③
b1+
b2+
b3+…+
bn-1=1-
(n≥2)④
③-④得:
bn=
-
(n≥2),
∴bn=(2n-1)
(n≥2),而b1=
适合上式,
∴bn=(2n-1)
.
由(Ⅱ)知Tn=3-
.
由a2,a5,a14构成等比数列,得(1+4d)2=(1+d)(1+13d),解得d=0(舍)或d=2.
∴an=2n-1;
(Ⅱ)由an=2n-1,bn=
| 1 |
| 2n |
| 2n-1 |
| 2n |
∴Tn=a1b1+a2b2+…+anbn
=
| 1 |
| 2 |
| 3 |
| 22 |
| 2n-3 |
| 2n-1 |
| 2n-1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 22 |
| 3 |
| 23 |
| 2n-3 |
| 2n |
| 2n-1 |
| 2n+1 |
①-②得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n-1 |
| 2n-1 |
| 2n+1 |
=
| 1 |
| 2 |
| ||||
1-
|
| 2n-1 |
| 2n+1 |
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 2n-1 |
| 2n+1 |
∴Tn=3-
| 2n+3 |
| 2n |
(Ⅲ)由an=2n-1,
| b1 |
| a1 |
| b2 |
| a2 |
| bn |
| an |
| 1 |
| 2n |
b1+
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
b1+
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-3 |
| 1 |
| 2n-1 |
③-④得:
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
∴bn=(2n-1)
| 1 |
| 2n |
| 1 |
| 2 |
∴bn=(2n-1)
| 1 |
| 2n |
由(Ⅱ)知Tn=3-
| 2n+3 |
| 2n |
点评:本题考查了等差数列和等比数列的通项公式,考查了错位相减法求数列的前n项和,是中高档题.
练习册系列答案
相关题目
正视图、侧视图、俯视图都是三角形的几何体一定是( )
| A、圆锥 | B、棱柱 |
| C、三棱锥 | D、四棱锥 |