题目内容

12.?($\sqrt{x}$-$\frac{1}{2x}$)12的展开式的常数项为$\frac{495}{16}$.

分析 由Tr+1=(-$\frac{1}{2}$)r${C}_{12}^{r}$${x}^{\frac{12-3r}{2}}$,令$\frac{12-3r}{2}$=0,得r=4,由此能求出($\sqrt{x}$-$\frac{1}{2x}$)12的展开式的常数项.

解答 解:∵($\sqrt{x}$-$\frac{1}{2x}$)12
∴Tr+1=${C}_{12}^{r}(\sqrt{x})^{12-r}(-\frac{1}{2x})^{r}$=(-$\frac{1}{2}$)r${C}_{12}^{r}$${x}^{\frac{12-3r}{2}}$,
由$\frac{12-3r}{2}$=0,得r=4,
($\sqrt{x}$-$\frac{1}{2x}$)12的展开式的常数项为:
(-$\frac{1}{2}$)4${C}_{12}^{4}$=$\frac{495}{16}$.
故答案为:$\frac{495}{16}$.

点评 本题考查二项展开式的常数项的求法,考查二项式定理、通项公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网