题目内容
12.?($\sqrt{x}$-$\frac{1}{2x}$)12的展开式的常数项为$\frac{495}{16}$.分析 由Tr+1=(-$\frac{1}{2}$)r${C}_{12}^{r}$${x}^{\frac{12-3r}{2}}$,令$\frac{12-3r}{2}$=0,得r=4,由此能求出($\sqrt{x}$-$\frac{1}{2x}$)12的展开式的常数项.
解答 解:∵($\sqrt{x}$-$\frac{1}{2x}$)12,
∴Tr+1=${C}_{12}^{r}(\sqrt{x})^{12-r}(-\frac{1}{2x})^{r}$=(-$\frac{1}{2}$)r${C}_{12}^{r}$${x}^{\frac{12-3r}{2}}$,
由$\frac{12-3r}{2}$=0,得r=4,
($\sqrt{x}$-$\frac{1}{2x}$)12的展开式的常数项为:
(-$\frac{1}{2}$)4${C}_{12}^{4}$=$\frac{495}{16}$.
故答案为:$\frac{495}{16}$.
点评 本题考查二项展开式的常数项的求法,考查二项式定理、通项公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.
练习册系列答案
相关题目
20.直线x-ysinθ+1=0的倾斜角的取值范围是( )
| A. | $[{\frac{π}{4},\frac{3π}{4}}]$ | B. | $[{0,\frac{π}{4}}]∪[{\frac{3π}{4},π})$ | C. | $[{0,\frac{π}{4}}]$ | D. | $[{\frac{π}{4},\frac{π}{2}})∪({\frac{π}{2},\frac{3π}{4}}]$ |
7.将函数f(x)=2sin2x的图象向左平移$\frac{π}{12}$个单位后得到函数g(x)的图象,若函数g(x)在区间[0,$\frac{a}{3}$]和[2a,$\frac{7π}{6}$]上均单调递增,则实数a的取值范围是( )
| A. | [$\frac{π}{3}$,$\frac{π}{2}$] | B. | [$\frac{π}{6}$,$\frac{π}{2}$] | C. | [$\frac{π}{6}$,$\frac{π}{3}$] | D. | [$\frac{π}{4}$,$\frac{3π}{8}$] |
4.把函数$y=cos2x+\sqrt{3}sin2x$的图象经过变化而得到y=2sin2x的图象,这个变化是( )
| A. | 向左平移$\frac{π}{12}$个单位 | B. | 向右平移$\frac{π}{12}$个单位 | ||
| C. | 向左平移$\frac{π}{6}$个单位 | D. | 向右平移$\frac{π}{6}$个单位 |
2.已知函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)=2x(1-x),则f(-$\frac{5}{2}$)+f(1)=( )
| A. | -$\frac{1}{2}$ | B. | -$\frac{1}{4}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |