题目内容
数列{an}的前n项的和为Sn,且an+Sn=-2n-1(n∈N*).
(1)证明:数列{an+2}是等比数列;
(2)若数列{bn}满足b1=1,且bn+1=bn+nan(n∈N*),求数列{bn}的通项公式.
(1)证明:数列{an+2}是等比数列;
(2)若数列{bn}满足b1=1,且bn+1=bn+nan(n∈N*),求数列{bn}的通项公式.
考点:数列递推式,等比数列的性质
专题:等差数列与等比数列
分析:(1)根据等比数列的定义,即可证明数列{an+2}是等比数列;
(2)利用累加法,即可求出数列的通项公式.
(2)利用累加法,即可求出数列的通项公式.
解答:
证明:(1)∵an+Sn=-2n-1,
∴an+1+Sn+1=-2n-3,
以上两式相减得,an1-an+Sn+1-Sn=-2,
∴an+1=an-2.
∴2(an+1+2)=an+2,且当n=1时,a1+S1=-3,即a1=-
,
∵a1+2=
≠0,∴an+2≠0,∴
=
.
∴{an+2}是以
为首项,
为公比的等比数列.
(2)由(1)的结论易知an+2=
•(
)n-1=(
)n,
∴an═(
)n-2.
∵bn+1=bn+nan,∴bn+1-bn=nan=n(
)n-2n,
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)
=1+[1×
-2]+[2×(
)2-2×2]+…+[(n-1)•(
)n-1-2(n-1)]
=1+[1×(
)+2×(
)2+…+(n-1)(
)n-1]-2[1+2+…+(n-1)]
=1+[1×(
)+2×(
)2+…+(n-1)(
)n-1]-n(n-1).
令T=1+[1×(
)+2×(
)2+…+(n-1)(
)n-1],
T=
+(
)2+2×(
)3+…+(n-2)×+(
)n-1+(n-1)×+(
)n,
∴T-
T=
T=1+(
)2++(
)3+…++(
)n-1-(n-1)×(
)n,
∴
T=
+
-(n-1)×(
)n,
=
-(n+1)×(
)n,
即T=3-(n+1)×(
)n-1.
∴bn=T-n(n-1)=3-(n+1)×(
)n-1-n(n-1),
即bn=3-(n+1)×(
)n-1-n(n-1).
∴an+1+Sn+1=-2n-3,
以上两式相减得,an1-an+Sn+1-Sn=-2,
∴an+1=an-2.
∴2(an+1+2)=an+2,且当n=1时,a1+S1=-3,即a1=-
| 3 |
| 2 |
∵a1+2=
| 1 |
| 2 |
| an+1+2 |
| an+2 |
| 1 |
| 2 |
∴{an+2}是以
| 1 |
| 2 |
| 1 |
| 2 |
(2)由(1)的结论易知an+2=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴an═(
| 1 |
| 2 |
∵bn+1=bn+nan,∴bn+1-bn=nan=n(
| 1 |
| 2 |
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)
=1+[1×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=1+[1×(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=1+[1×(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
令T=1+[1×(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴T-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| 2 |
| 1 |
| 2 |
| ||||
1-
|
| 1 |
| 2 |
=
| 3 |
| 2 |
| 1 |
| 2 |
即T=3-(n+1)×(
| 1 |
| 2 |
∴bn=T-n(n-1)=3-(n+1)×(
| 1 |
| 2 |
即bn=3-(n+1)×(
| 1 |
| 2 |
点评:本题主要考查等比数列的定义,以及利错位相减法求数列的通项公式,运算量较大,综合性较强.
练习册系列答案
相关题目
已知
-
=-8
+16
,
+
=2
-8
(
,
为互相垂直的单位向量),则
•
=( )
| a |
| b |
| i |
| j |
| a |
| b |
| i |
| j |
| i |
| j |
| a |
| b |
| A、63 | B、-63 |
| C、33 | D、-33 |