题目内容

数列{an}的前n项的和为Sn,且an+Sn=-2n-1(n∈N*).
(1)证明:数列{an+2}是等比数列;
(2)若数列{bn}满足b1=1,且bn+1=bn+nan(n∈N*),求数列{bn}的通项公式.
考点:数列递推式,等比数列的性质
专题:等差数列与等比数列
分析:(1)根据等比数列的定义,即可证明数列{an+2}是等比数列;
(2)利用累加法,即可求出数列的通项公式.
解答: 证明:(1)∵an+Sn=-2n-1,
∴an+1+Sn+1=-2n-3,
以上两式相减得,an1-an+Sn+1-Sn=-2,
∴an+1=an-2.
∴2(an+1+2)=an+2,且当n=1时,a1+S1=-3,即a1=-
3
2

∵a1+2=
1
2
≠0,∴an+2≠0,∴
an+1+2
an+2
=
1
2

∴{an+2}是以
1
2
为首项,
1
2
为公比的等比数列.
(2)由(1)的结论易知an+2=
1
2
•(
1
2
n-1=(
1
2
n
∴an═(
1
2
n-2.
∵bn+1=bn+nan,∴bn+1-bn=nan=n(
1
2
n-2n,
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1
=1+[1×
1
2
-2]+[2×(
1
2
)2-2×2
]+…+[(n-1)•(
1
2
)n-1-2(n-1)
]
=1+[1×(
1
2
)+2×(
1
2
)2+…+(n-1)(
1
2
)n-1
]-2[1+2+…+(n-1)]
=1+[1×(
1
2
)+2×(
1
2
)2+…+(n-1)(
1
2
)n-1
]-n(n-1).
令T=1+[1×(
1
2
)+2×(
1
2
)2+…+(n-1)(
1
2
)n-1
],
1
2
T=
1
2
+(
1
2
2+2×(
1
2
3+…+(n-2)×+(
1
2
n-1+(n-1)×+(
1
2
n
∴T-
1
2
T=
1
2
T=1+(
1
2
2++(
1
2
3+…++(
1
2
n-1-(n-1)×(
1
2
n
1
2
T=
1
2
+
1
2
[1-(
1
2
)n-1]
1-
1
2
-(n-1)×(
1
2
n
=
3
2
-(n+1)×(
1
2
n
即T=3-(n+1)×(
1
2
n-1
∴bn=T-n(n-1)=3-(n+1)×(
1
2
n-1-n(n-1),
即bn=3-(n+1)×(
1
2
n-1-n(n-1).
点评:本题主要考查等比数列的定义,以及利错位相减法求数列的通项公式,运算量较大,综合性较强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网