ÌâÄ¿ÄÚÈÝ
19£®£¨1£©ÇóµãCµÄ×ø±ê£»
£¨2£©¢Ùµ±tΪ2Ãëʱ£¬¡÷PCDµÄÖܳ¤×îС£»
¢Úµ±tΪ4¡À$\sqrt{6}$»ò4Ãëʱ£¬¡÷PCDÊÇÒÔCDΪÑüµÄµÈÑüÈý½ÇÐΣ»£¨½á¹û±£Áô¸ùºÅ£©
£¨3£©Ì½¾¿µãPÔÚÔ˶¯¹ý³ÌÖУ¬ÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹¡÷PCDÊÇÒÔCDΪб±ßµÄÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÓÉy=0£¬½âµÃx=-3»ò-1£¬¼´¿ÉµÃµ½CµÄ×ø±ê£»
£¨2£©¢ÙÓÉÓÚCDΪ¶¨Öµ£¬Ö»ÐèPC+PDµÄºÍ×îС£¬ÓÉCΪB¹ØÓÚÖ±Ïßx=-2¶Ô³Æ£¬Á¬½ÓBD£¬¼´¿ÉµÃµ½×îСֵµÄµãP£»¢ÚÓÉÌâÒâ¿ÉµÃPD=CD»òPC=CD£¬ÔËÓÃÁ½µãµÄ¾àÀ빫ʽ¼ÆËã¼´¿ÉµÃµ½ËùÇó£»
£¨3£©£¨3£©¼ÙÉè´æÔÚÒ»µãP£¬Ê¹¡÷PCDÊÇÒÔCDΪб±ßµÄÖ±½ÇÈý½ÇÐΣ®ÉèP£¨-2£¬n£©£¬¼´ÓÐPC¡ÍPD£¬ÔËÓÃÁ½Ö±Ïß´¹Ö±µÄÌõ¼þ£ºÐ±ÂÊÖ®»ýΪ-1£¬¼ÆËã¼´¿ÉµÃµ½ËùÇóÖµ£®
½â´ð
½â£º£¨1£©Å×ÎïÏßy=x2+4x+3£¬Áîy=0£¬¿ÉµÃx=-3»ò-1£¬
¼´ÓÐC£¨-1£¬0£©£»
£¨2£©¢ÙÓÉy=0¿ÉµÃB£¨-3£¬0£©£¬C£¨-1£¬0£©£¬
ÓÉx=0£¬¿ÉµÃy=3£¬¼´D£¨0£¬3£©£¬
ÓÉÓÚCDΪ¶¨Öµ£¬Ö»ÐèPC+PDµÄºÍ×îС£¬
ÓÉCΪB¹ØÓÚÖ±Ïßx=-2¶Ô³Æ£¬Á¬½ÓBD£¬
¼´ÓÐPC+PDµÄ×îСֵΪBD£¬
ÓÉBDµÄ·½³ÌΪy=x+3£¬Áîx=-2£¬½âµÃy=1£¬
¼´ÓÐP£¨-2£¬1£©£¬
ÓÉA£¨-2£¬-1£©£¬¿ÉµÃt=2ÃëʱÖܳ¤×îС£»
¢ÚÓÉÌâÒâ¿ÉµÃPD=CD»òPC=CD£¬
ÉèP£¨-2£¬m£©£¬¼´ÓÐ$\sqrt{4+£¨m-3£©^{2}}$=$\sqrt{10}$»ò$\sqrt{1+{m}^{2}}$=$\sqrt{10}$£¬
½âµÃm=3¡À$\sqrt{6}$»òm=3£¨-3ÉáÈ¥£©£¬
¼´ÓÐt=4¡À$\sqrt{6}$»ò4£»
£¨3£©¼ÙÉè´æÔÚÒ»µãP£¬Ê¹¡÷PCDÊÇÒÔCDΪб±ßµÄÖ±½ÇÈý½ÇÐΣ®
ÉèP£¨-2£¬n£©£¬¼´ÓÐPC¡ÍPD£¬
¿ÉµÃkPC•kPD=-1£¬¼´Îª$\frac{n}{-1}$•$\frac{n-3}{-2}$=-1£¬
½âµÃn=1»ò2£¬
¹Ê´æÔÚÒ»µãP£¨-2£¬1£©»ò£¨-2£¬2£©£¬
ʹ¡÷PCDÊÇÒÔCDΪб±ßµÄÖ±½ÇÈý½ÇÐΣ®
¹Ê´ð°¸Îª£º2£¬4¡À$\sqrt{6}$»ò4£®
µãÆÀ ±¾Ì⿼²é¶þ´Îº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬¿¼²éÈý½ÇÐεÄÐÎ×´µÄÅжϺÍÔËÓã¬×¢ÒâÔËÓöԳÆÐÔÇó×îСֵ£¬ÒÔ¼°Ö±Ïß´¹Ö±µÄÌõ¼þ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{\sqrt{6}}{2}$ | B£® | $\frac{\sqrt{6}}{3}$ | C£® | $\frac{\sqrt{6}}{4}$ | D£® | $\sqrt{2}$ |
| A£® | ${¡Ò}_{0}^{1}$2xdx | B£® | ${¡Ò}_{0}^{1}$£¨2x-1£©dx | C£® | ${¡Ò}_{0}^{1}$£¨2x+1£©dx | D£® | ${¡Ò}_{0}^{1}$£¨1-2x£©dx |
| A£® | 1 | B£® | 2 | C£® | $\frac{5}{2}$ | D£® | $\frac{7}{2}$ |