ÌâÄ¿ÄÚÈÝ
9£®£¨¢ñ£©ÇóÍÖÔ²GµÄ·½³Ì£»
£¨¢ò£©Éè¹ýÍÖÔ²GµÄÉ϶¥µãAµÄÖ±ÏßlÓëÍÖÔ²GµÄÁíÒ»¸ö½»µãΪB£¬ÓëxÖá½»ÓÚµãC£¬Ïß¶ÎABµÄÖеãΪD£¬Ïß¶ÎABµÄ´¹Ö±Æ½·ÖÏß·Ö±ð½»xÖá¡¢yÖáÓÚP¡¢QÁ½µã£®ÎÊ£ºÊÇ·ñ´æÔÚÖ±Ïßlʹ¡÷PDCÓë¡÷POQµÄÃæ»ýÏàµÈ£¨OÎª×ø±êԵ㣩£¿Èô´æÔÚ£¬Çó³öËùÓÐÂú×ãÌõ¼þµÄÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¿ÉµÃ2a=2$\sqrt{2}$£¬¼´a=$\sqrt{2}$£¬e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬¿ÉµÃc£¬ÔÙÓÉa£¬b£¬cµÄ¹ØÏµ¿ÉµÃb£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©ÉèA£¨0£¬1£©£¬Ö±ÏßABµÄ·½³ÌΪy=kx+1£¬´úÈëÍÖÔ²·½³Ì£¬ÇóµÃBµÄ×ø±ê£¬ÔÙÓÉÖеã×ø±ê¹«Ê½¿ÉµÃD£¬ÇóµÃÏß¶ÎABµÄÖд¹Ïß·½³Ì£¬¿ÉµÃP£¬QµÄ×ø±ê£¬¼ÙÉè´æÔÚÖ±Ïßl£¬Ê¹¡÷PDCÓë¡÷POQµÄÃæ»ýÏàµÈ£¨OÎª×ø±êԵ㣩£¬ÔËÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½£¬$\frac{PC}{PO}$=$\frac{PQ}{PD}$£¬¼´ÓÐ$\frac{{x}_{C}-{x}_{P}}{-{x}_{P}}$=$\frac{{x}_{Q}-{x}_{P}}{{x}_{D}-{x}_{P}}$£¬½â·½³Ì¼´¿ÉµÃµ½ËùÇókµÄÖµ£¬½ø¶øÅжϴæÔÚÖ±Ïßl£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉµÃ2a=2$\sqrt{2}$£¬¼´a=$\sqrt{2}$£¬e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬½âµÃc=1£¬b=1£¬
¿ÉµÃÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{2}$+y2=1£»
£¨¢ò£©ÉèA£¨0£¬1£©£¬Ö±ÏßABµÄ·½³ÌΪy=kx+1£¬
´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ£¨1+2k2£©x2+4kx=0£¬
½âµÃx=-$\frac{4k}{1+2{k}^{2}}$£¬»òx=0£®
¼´ÓÐB£¨-$\frac{4k}{1+2{k}^{2}}$£¬$\frac{1-2{k}^{2}}{1+2{k}^{2}}$£©£¬C£¨-$\frac{1}{k}$£¬0£©£¬
ÖеãDµÄ×ø±êΪ£¨-$\frac{2k}{1+2{k}^{2}}$£¬$\frac{1}{1+2{k}^{2}}$£©£¬
¿ÉµÃABµÄÖд¹Ïß·½³ÌΪy-$\frac{1}{1+2{k}^{2}}$=-$\frac{1}{k}$£¨x+$\frac{2k}{1+2{k}^{2}}$£©£¬
»¯Îªy=-$\frac{1}{k}$x-$\frac{1}{1+2{k}^{2}}$£¬
¿ÉµÃP£¨-$\frac{k}{1+2{k}^{2}}$£¬0£©£¬Q£¨0£¬-$\frac{1}{1+2{k}^{2}}$£©£¬
¼ÙÉè´æÔÚÖ±Ïßl£¬Ê¹¡÷PDCÓë¡÷POQµÄÃæ»ýÏàµÈ£¨OÎª×ø±êԵ㣩£¬
¼´ÓÐ$\frac{1}{2}$PD•PC•sin¡ÏDPC=$\frac{1}{2}$PO•PQ•sin¡ÏOPQ£¬
¼´ÓÐPD•PC=PO•PQ£¬
¼´Îª$\frac{PC}{PO}$=$\frac{PQ}{PD}$£¬¼´ÓÐ$\frac{{x}_{C}-{x}_{P}}{-{x}_{P}}$=$\frac{{x}_{Q}-{x}_{P}}{{x}_{D}-{x}_{P}}$£¬
¼´ÓÐ$\frac{-1-{k}^{2}}{{k}^{2}}$=-1£¬
¿ÉµÃkÎ޽⣮
¹Ê²»´æÔÚÖ±Ïßl£¬Ê¹¡÷PDCÓë¡÷POQµÄÃæ»ýÏàµÈ£¨OÎª×ø±êԵ㣩£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍ³¤Ö᳤£¬¿¼²éÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬Ç󽻵㣬Á½Ö±Ïß´¹Ö±µÄÌõ¼þ¼°Öеã×ø±ê¹«Ê½µÄÔËÓ㬿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÓÖ²»±ØÒªÌõ¼þ |
| A£® | $\sqrt{3}$+1 | B£® | 2 | C£® | $\sqrt{3}$ | D£® | $\frac{\sqrt{5}}{2}$ |
| A£® | $\frac{3}{4}$ | B£® | $\frac{\sqrt{3}}{2}$ | C£® | $\frac{\sqrt{2}}{2}$ | D£® | $\frac{1}{2}$ |
| A£® | e2016-e2015 | B£® | e2017-e2016 | C£® | e2015-1 | D£® | e2016-1 |
| ×é±ð | ÿλ³ÉÔ±´ÓÆô¶¯µ÷²éµ½Íê³É±¨¸æËùÓõÄʱ¼ä£¨µ¥Î»£ºÌ죩 | ||||||
| ¼×С×é | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| ÒÒС×é | 12 | 13 | 15 | 16 | 17 | 14 | a |
£¨¢ñ£©ÇóAËùÓÃʱ¼ä²»Ð¡ÓÚ13ÌìµÄ¸ÅÂÊ£»
£¨¢ò£©Èç¹ûa=18£¬ÇóAËùÓõÄʱ¼ä±ÈBËùÓÃʱ¼ä³¤µÄ¸ÅÂÊ£®