题目内容

11.设函数 $f(x)=\frac{2}{x}+lnx$,则(  )
A.$x=\frac{1}{2}$ 为 f(x)的极大值点B.$x=\frac{1}{2}$为f(x)的极小值点
C.x=2 为 f(x)的极大值点D.x=2为f(x)的极小值点

分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极小值点即可.

解答 解:f′(x)=-$\frac{2}{{x}^{2}}$+$\frac{1}{x}$=$\frac{x-2}{{x}^{2}}$,(x>0),
令f′(x)>0,解得:x>2,
令f′(x)<0,解得:0<x<2,
故f(x)在(0,2)递减,在(2,+∞)递增,
故x=2是函数的极小值点,
故选:D.

点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网