题目内容
3.已知α,β是相异两平面,m,n是相异两直线,则下列命题中不正确的是 ( )| A. | 若m∥n,m⊥α,则n⊥α | B. | 若m⊥α,m⊥β,则α∥β | ||
| C. | 若m∥α,α∩β=n,则m∥n | D. | 若m⊥α,m?β,则α⊥β |
分析 在A中,由直线与平面垂直的判定定理得n⊥α;在B中,由平面与平面平行的判定定理得α∥β;在C中,m与n平行或异面;在D中,由平面与平面垂直的判定定理得α⊥β.
解答 解:∵在A中:若m∥n,m⊥α,则由直线与平面垂直的判定定理得n⊥α,故A正确;
在B中:若m⊥α,m⊥β,则由平面与平面平行的判定定理得α∥β,故B正确;
在C中:若m∥α,α∩β=n,则m与n平行或异面,故C错误;
在D中:若m⊥α,m∩β,则由平面与平面垂直的判定定理得α⊥β,故D正确.
故选:C.
点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.
练习册系列答案
相关题目
11.设函数 $f(x)=\frac{2}{x}+lnx$,则( )
| A. | $x=\frac{1}{2}$ 为 f(x)的极大值点 | B. | $x=\frac{1}{2}$为f(x)的极小值点 | ||
| C. | x=2 为 f(x)的极大值点 | D. | x=2为f(x)的极小值点 |
18.长方形ABCD中,AB=2,BC=1,F是线段DC上一动点,且0<FC<1.将△AFD沿AF折起,使平面AFD⊥平面ABC,在平面ABD内作DK⊥AB于K,设AK=t,则t的值可能为( )
| A. | $\frac{4}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
6.已知a,b,c∈R,且ac=b2,a+b+c=3,则b的取值范围是( )
| A. | [0,1] | B. | [-3,-1] | C. | [-1,1] | D. | [-3,1] |