题目内容
20.已知x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ x+y-2≥0\\ x≤2\end{array}\right.$,则目标函数z=2x-y的最大值为( )| A. | -$\frac{1}{2}$ | B. | 1 | C. | 4 | D. | 5 |
分析 作出不等式组对应的平面区域,利用目标函数z的几何意义,进行平移,结合图象得到z=2x-y的最大值.
解答
解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x-y得y=2x-z,
平移直线y=2x-z,
由图象可知当直线y=2x-z经过点(2,0)时,直线y=2x-z的截距最小,
此时z最大.
即zmax=2×2-0=4,
故选:C.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目
10.若x,y满足约束条件$\left\{\begin{array}{l}{x-5≤0}\\{y-3≥0}\\{y≤x+1}\\{\;}\end{array}\right.$,则目标函数z=-x+y的最小值为( )
| A. | -2 | B. | -1 | C. | 1 | D. | 2 |
11.设i是虚数单位,复数$z=1+\frac{1-i}{1+i}$在复平面上所表示的点为( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
8.已知直线l:2x+y-b=0,圆C:(x-$\sqrt{3}$)2+y2=4,则“0<b<1”是“l与C相交”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
15.下列函数中,既是偶函数又在区间(0,+∞)上是单调增函数的是( )
| A. | $y=\frac{1}{x}$ | B. | y=|x|-1 | C. | y=lgx | D. | $y={({\frac{1}{2}})^{|x|}}$ |
12.若x,y 满足$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≤0\\ y≥0\end{array}$,则z=$\frac{1}{2}$x+y的最大值为( )
| A. | $\frac{5}{2}$ | B. | 3 | C. | $\frac{7}{2}$ | D. | 4 |
9.命题p:若a<b,则ac2<bc2;命题q:?x0>0,使得x0-1-lnx0=0,则下列命题为真命题的是( )
| A. | p∧q | B. | p∨(¬q) | C. | (¬p)∧q | D. | (¬p)∧(¬q) |
10.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为( )
| A. | 40 | B. | 16 | C. | 13 | D. | 10 |