题目内容

1.△ABC中,角A,B,C所对的边分别为a,b,c,已知A=60°,b=2,S△ABC=2$\sqrt{3}$,则$\frac{a+b+c}{sinA+sinB+sinC}$=4.

分析 首先利用三角形的面积公式求出c的长度,进一步利用余弦定理求出a的长度,在应用正弦定理和等比性质求出结果.

解答 解:已知∠A=60°,b=2,面积S△ABC=2$\sqrt{3}$,
S=$\frac{1}{2}$bcsinA=2$\sqrt{3}$,
解得:c=4,
利用余弦定理:a2=b2+c2-2bccosA,
解得:a=2$\sqrt{3}$,
利用正弦定理:$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=$\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}}$=4,
利用等比性质:则$\frac{a+b+c}{sinA+sinB+sinC}$=4,
故答案为:4.

点评 本题考查的知识点:三角形的面积公式,余弦定理和正弦定理的应用,等比性质的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网