题目内容
13.| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{3\sqrt{2}}{2}$ | D. | 3$\sqrt{2}$ |
分析 ′O′=C′O′=$\sqrt{6}$,A′O′=$\frac{\sqrt{3}}{4}$,直接计算△ABC即可.
解答 解:因为B′O′=C′O′=$\sqrt{6}$,A′O′=$\frac{\sqrt{3}}{4}$,
所以△ABC的面积为$\frac{1}{2}×2\sqrt{6}×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{2}}{2}$.
故选C.
点评 本题考查斜二测画法中原图和直观图面积之间的关系,属基本运算的考查.
练习册系列答案
相关题目
3.命题:若x+y≠5则x≠2或y≠3( )
| A. | 真命题 | B. | 假命题 | C. | 无法判断真假 | D. | 不确定 |
8.已知点O是锐角△ABC的外心,a,b,c分别为内角A、B、C的对边,A=$\frac{π}{4}$,且$\frac{cosB}{sinC}$$\overrightarrow{AB}$+$\frac{cosC}{sinB}$$\overrightarrow{AC}$=λ$\overrightarrow{OA}$,则λ的值为( )
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | -$\frac{{\sqrt{2}}}{2}$ | C. | $\sqrt{2}$ | D. | -$\sqrt{2}$ |
18.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0)的一条渐近线为y=$\sqrt{3}$x,则离心率e等于( )
| A. | $\sqrt{2}$ | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | 2 |
5.等比数列{an}的前n项和Sn=$\frac{1}{2}$3n+1-a,则a等于( )
| A. | $\frac{3}{2}$ | B. | $-\frac{3}{2}$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
3.
在R上可导的函数f(x)的图象如图示,f′(x)为函数f(x)的导数,则关于x的不等式x•f′(x)<0的解集为( )
| A. | (-∞,-1)∪(0,1) | B. | (-2,-1)∪(1,2) | C. | (-1,0)∪(1,+∞) | D. | (-∞,-2)∪(2,+∞) |