ÌâÄ¿ÄÚÈÝ
20£®| ·Ö×é | ƵÊý |
| [2£¬4£© | 2 |
| [4£¬6£© | 10 |
| [6£¬8£© | 16 |
| [8£¬10£© | 8 |
| [10£¬12] | 4 |
| ºÏ¼Æ | 40 |
£¨2£©´Ó¸ÃÐ¡ÇøËæ»úѡȡһ¸ö¼ÒÍ¥£¬ÊÔ¹À¼ÆÕâ¸ö¼ÒͥȥÄêµÄÔ¾ùÓÃË®Á¿²»µÍÓÚ6¶ÖµÄ¸ÅÂÊ£»
£¨3£©ÔÚÕâ40¸ö¼ÒÍ¥ÖУ¬Ó÷ֲã³éÑùµÄ·½·¨´ÓÔ¾ùÓÃË®Á¿²»µÍÓÚ6¶ÖµÄ¼ÒÍ¥Àï³éȡһ¸öÈÝÁ¿Îª7µÄÑù±¾£¬½«¸ÃÑù±¾¿´³ÉÒ»¸ö×ÜÌ壬´ÓÖÐÈÎÒâѡȡ2¸ö¼ÒÍ¥£¬ÇóÆäÖÐÇ¡ÓÐÒ»¸ö¼ÒÍ¥µÄÔ¾ùÓÃË®Á¿²»µÍÓÚ8¶ÖµÄ¸ÅÂÊ£®
·ÖÎö £¨1£©Çó³öÑù±¾ÖмÒÍ¥Ô¾ùÓÃË®Á¿ÔÚ[4£¬6£©ÉÏµÄÆµÂÊΪ$\frac{10}{40}=0.25$£¬ÔÚ[6£¬8£©ÉÏµÄÆµÂÊΪ$\frac{16}{40}=0.4$£¬¼´¿ÉÇóƵÂÊ·Ö²¼Ö±·½Í¼ÖÐa£¬bµÄÖµ£»
£¨2£©¸ù¾ÝƵÊý·Ö²¼±í£¬40¸ö¼ÒÍ¥ÖÐÔ¾ùÓÃË®Á¿²»µÍÓÚ6¶ÖµÄ¼ÒÍ¥¹²ÓÐ28¸ö£¬Çó³ö¸ÅÂÊ£¬¼´¿É¹À¼ÆÕâ¸ö¼ÒͥȥÄêµÄÔ¾ùÓÃË®Á¿²»µÍÓÚ6¶ÖµÄ¸ÅÂÊ£»
£¨3£©ÀûÓÃÁоٷ¨È·¶¨»ù±¾Ê¼þ£¬ÔÙÇó³ö¸ÅÂÊ£®
½â´ð ½â£º£¨1£©ÒòΪÑù±¾ÖмÒÍ¥Ô¾ùÓÃË®Á¿ÔÚ[4£¬6£©ÉÏµÄÆµÂÊΪ$\frac{10}{40}=0.25$£¬
ÔÚ[6£¬8£©ÉÏµÄÆµÂÊΪ$\frac{16}{40}=0.4$£¬
ËùÒÔ$a=\frac{0.25}{2}=0.125$£¬$b=\frac{0.4}{2}=0.2$£®
£¨2£©¸ù¾ÝƵÊý·Ö²¼±í£¬40¸ö¼ÒÍ¥ÖÐÔ¾ùÓÃË®Á¿²»µÍÓÚ6¶ÖµÄ¼ÒÍ¥¹²ÓÐ28¸ö£¬
ËùÒÔÑù±¾ÖмÒÍ¥Ô¾ùÓÃË®Á¿²»µÍÓÚ6¶ÖµÄ¸ÅÂÊÊÇ$\frac{28}{40}=0.7$£¬
ÀûÓÃÑù±¾¹À¼Æ×ÜÌ壬´Ó¸ÃÐ¡ÇøËæ»úѡȡһ¸ö¼ÒÍ¥£¬¿É¹À¼ÆÕâ¸ö¼ÒͥȥÄêµÄÔ¾ùÓÃË®Á¿²»µÍÓÚ6¶ÖµÄ¸ÅÂÊԼΪ0.7£®
£¨3£©ÔÚÕâ40¸ö¼ÒÍ¥ÖУ¬Ó÷ֲã³éÑùµÄ·½·¨´ÓÔ¾ùÓÃË®Á¿²»µÍÓÚ6¶ÖµÄ¼ÒÍ¥Àï³éȡһ¸öÈÝÁ¿Îª7µÄÑù±¾£¬
ÔòÔÚ[6£¬8£©ÉÏÓ¦³éÈ¡$7¡Á\frac{16}{28}=4$ÈË£¬¼ÇΪA£¬B£¬C£¬D£¬
ÔÚ[8£¬10£©ÉÏÓ¦³éÈ¡$7¡Á\frac{8}{28}=2$ÈË£¬¼ÇΪE£¬F£¬
ÔÚ[10£¬12£©ÉÏÓ¦³éÈ¡$7¡Á\frac{4}{28}=1$ÈË£¬¼ÇΪG£®
´ÓÖÐÈÎÒâѡȡ2¸ö¼ÒÍ¥µÄËùÓлù±¾Ê¼þÓУº£¨A£¬B£©£¬£¨A£¬C£©£¬£¨A£¬D£©£¬£¨A£¬E£©£¬£¨A£¬F£©£¬£¨A£¬G£©£¬£¨B£¬C£©£¬£¨B£¬D£©£¬£¨B£¬E£©£¬£¨B£¬F£©£¬£¨B£¬G£©£¬£¨C£¬D£©£¬£¨C£¬E£©£¬£¨C£¬F£©£¬£¨C£¬G£©£¬£¨D£¬E£©£¬£¨D£¬F£©£¬£¨D£¬G£©£¬£¨E£¬F£©£¬£¨E£¬G£©£¬£¨F£¬G£©£¬¹²21ÖÖ£®
ÆäÖÐÇ¡ÓÐÒ»¸ö¼ÒÍ¥µÄÔ¾ùÓÃË®Á¿²»µÍÓÚ8¶ÖµÄʼþÓУº£¨A£¬E£©£¬£¨A£¬F£©£¬£¨A£¬G£©£¬£¨B£¬E£©£¬£¨B£¬F£©£¬£¨B£¬G£©£¬£¨C£¬E£©£¬£¨C£¬F£©£¬£¨C£¬G£©£¬£¨D£¬E£©£¬£¨D£¬F£©£¬£¨D£¬G£©£¬¹²12ÖÖ£®
ËùÒÔÆäÖÐÇ¡ÓÐÒ»¸ö¼ÒÍ¥µÄÔ¾ùÓÃË®Á¿²»µÍÓÚ8¶ÖµÄ¸ÅÂÊΪ$\frac{12}{21}=\frac{4}{7}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÆµÂÊ·Ö²¼Ö±·½Í¼£¬ÓÃÑù±¾¹À¼Æ×ÜÌ壬¿¼²é¸ÅÂʵļÆË㣬½âÌâµÄ¹Ø¼üÊǶÁ¶®ÆµÊý·Ö²¼Ö±·½Í¼ºÍÀûÓÃͳ¼ÆÍ¼»ñÈ¡ÓйØÐÅÏ¢£¬ÔÚ½âÌâʱ±ØÐëÈÏÕæ¹Û²ì¡¢·ÖÎö¡¢Ñо¿Í³¼ÆÍ¼£®
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
| A£® | 2 | B£® | 3 | C£® | -1 | D£® | $\frac{1}{2}$ |
| A£® | -1 | B£® | -2 | C£® | 2 | D£® | 1 |
| x | 0 | 1 | 3 | 4 |
| y | 0.9 | 1.9 | 3.2 | 4.4 |
| A£® | 1.5 | B£® | 1.2 | C£® | 0.9 | D£® | 0.8 |
| A£® | Èôa1+a2£¾0£¬Ôòa2+a3£¾0 | B£® | Èôa1+a2£¼0£¬Ôòa2+a3£¼0 | ||
| C£® | Èô0£¼a1£¼a2£¬Ôòa2£¾$\sqrt{{a}_{1}{a}_{3}}$ | D£® | Èôa1£¼0£¬Ôò£¨a2-a1£©£¨a2-a3£©£¼0 |
| Y X | y1 | y2 | ×Ü¼Æ |
| x1 | a | b | a+b |
| x2 | c | d | c+d |
| ×Ü¼Æ | a+c | b+d | a+b+c+d |
£¨²Î¿¼¹«Ê½£º${k^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£©
| A£® | a=5£¬b=4£¬c=3£¬d=2 | B£® | a=5£¬b=3£¬c=4£¬d=2 | C£® | a=2£¬b=3£¬c=4£¬d=5 | D£® | a=3£¬b=2£¬c=4£¬d=5 |