题目内容

若函数y=xlnx-ax2有两个极值点,则实数a的范围是
 
考点:利用导数研究函数的极值
专题:综合题,导数的概念及应用
分析:先求导函数,函数f(x)=x(lnx-ax)有两个极值点,等价于f′(x)=lnx-2ax+1有两个零点,等价于函数y=lnx与y=2ax-1的图象由两个交点,在同一个坐标系中作出它们的图象.由图可求得实数a的取值范围.
解答: 解:由题意,y′=lnx+1-2ax
令f′(x)=lnx-2ax+1=0得lnx=2ax-1,
函数y=xlnx-ax2有两个极值点,等价于f′(x)=lnx-2ax+1有两个零点,
等价于函数y=lnx与y=2ax-1的图象有两个交点,
在同一个坐标系中作出它们的图象(如图)
当a=
1
2
时,直线y=2ax-1与y=lnx的图象相切,
由图可知,当0<a<
1
2
时,y=lnx与y=2ax-1的图象有两个交点.
则实数a的取值范围是(0,
1
2
)

故答案为:(0,
1
2
)
点评:本题主要考查函数的零点以及数形结合方法,数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网