题目内容
7.已知数列{an}为等差数列,a1+a2+a3=3,a5+a6+a7=9,则a10=( )| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
分析 依题意得:a1+a2+a3=3a2=3,从而a2=1;同样的方法得到a6=3,最后根据a2+a6=2a4得到a4=2,所以d=$\frac{1}{2}$,则a10=a6+4d.
解答 解:∵数列{an}为等差数列,
∴a1+a2+a3=3a2=3,a5+a6+a7=3a6=9,
∴a2=1,a6=3,
∵a2+a6=2a4,
∴a4=$\frac{1}{2}$(a2+a6)=2,
∴2d=a6-a4=1,
则d=$\frac{1}{2}$,
∴a10=a6+4d=3+2=5.
故选:B.
点评 本题给出一个特殊的等差数列,在已知连续3项和的情况下,运用等差中项求未知项,着重考查了等差数列的性质,属于基础题.
练习册系列答案
相关题目
17.抛物线x=-8y2的焦点坐标是( )
| A. | (-$\frac{1}{32}$,0) | B. | (-2,0) | C. | ($\frac{1}{32}$,0) | D. | (0,-2) |
18.一条光线从点A(-4,0)射入,与直线y=3相交于点B(-1,3),经直线y=3反射后过点C(m,-1),直线l过点C且分别与x轴和y轴的负半轴交于P,Q两点,O为坐标原点,则当△OPQ的面积最小时直线l的方程为( )
| A. | $\frac{x}{4}$-$\frac{y}{4}$=1 | B. | $\frac{x}{2}$-$\frac{y}{6}$=1 | C. | $\frac{x}{6}$-$\frac{y}{2}$=1 | D. | $\frac{x}{12}$-$\frac{3y}{4}$=1 |
2.函数f(x)=aex-1-$\sqrt{x}$+1的图象在点(1,f(1))处的切线斜率为$\frac{5}{2}$,则实数a=( )
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | 3 | D. | -3 |
17.函数$f(x)=\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x}\;,x≥4}\\{f(x+1)\;,x<4}\end{array}}\right.$,则f(log23)=( )
| A. | $\frac{1}{24}$ | B. | $\frac{1}{19}$ | C. | $\frac{1}{11}$ | D. | $-\frac{23}{8}$ |