题目内容
2.在区间[-1,1]上任取两个数x,y,则点P(x,y)落在以原点为圆心,$\frac{1}{2}$为半径的圆内的概率是( )| A. | $\frac{π}{16}$ | B. | $\frac{π}{8}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{2}$ |
分析 由题意,本题是几何概型,由于是两个变量,所以利用区域的面积比求概率.
解答 解:由题意,在区间[-1,1]上任取两个数x,y,对应区域是边长为2的正方形,面积为4,
则点P(x,y)落在以原点为圆心,$\frac{1}{2}$为半径的圆内,对应区域面积为$π(\frac{1}{2})^{2}=\frac{π}{4}$;
所以由几何概型的公式得到所求的概率是:$\frac{\frac{π}{4}}{4}=\frac{π}{16}$;
故选A.
点评 本题考查了几何概型的概率求法;关键是明确事件 的几何测度为变量对应区域的面积;利用面积比求得概率.
练习册系列答案
相关题目
13.设集合U={1,2,3,4,5,6},A={1,2,3},B={2,3,4},则∁U(A∩B)等于( )
| A. | {2,3} | B. | {1,4,5} | C. | {3,4,5,6} | D. | {1,4,5,6} |
10.实数m是[0,5]上的随机数,则关于x的方程x2-2x+m=0有实根的概率为( )
| A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{5}$ |
7.这是一个共享的时代,共享资源、共享网络、共享知识…,2016年底,共享单车在国内火爆起来.某公司为了解运营共享单车的收益情况,随机调查了五个城市租用共享单车时间x(单位:千小时)与收益y(千元)的相关数据,如表为抽样数据:
(Ⅰ)请根据上表数据画出散点图
(Ⅱ)根据散点图判断,y=bx+a与y=c$\sqrt{x}$+d哪一个适宜作为y关于x的回归方程类型(给出判断即可,不必说明理由);根据判断结果及表中数据,求出y关于x的回归方程.(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
| x | 16 | 14 | 12 | 10 | 8 |
| y | 11 | 9 | 8 | 6 | 5 |
(Ⅱ)根据散点图判断,y=bx+a与y=c$\sqrt{x}$+d哪一个适宜作为y关于x的回归方程类型(给出判断即可,不必说明理由);根据判断结果及表中数据,求出y关于x的回归方程.(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
8.要得到函数y=cos2x的图象,只需将函数y=sin(2x+$\frac{π}{3}$)的图象( )
| A. | 向左平行移动$\frac{π}{12}$个单位长度 | B. | 向左平行移动$\frac{π}{6}$个单位长度 | ||
| C. | 向右平行移动$\frac{π}{12}$个单位长度 | D. | 向右平行移动$\frac{π}{6}$个单位长度 |