题目内容
3.函数y=1-sinx的最大值是2.分析 根据正弦函数的有界性,求出函数y=1-sinx的最大值.
解答 解:∵-1≤sinx≤1,
∴0≤1-sinx≤2,
∴x=-$\frac{π}{2}$+2kπ,k∈Z时,
函数y=1-sinx取得最大值2.
故答案为:2.
点评 本题考查了正弦函数的有界性问题,是基础题.
练习册系列答案
相关题目
18.某四棱锥的三视图如图所示,该四棱锥的体积是( )

| A. | 8$\sqrt{5}$ | B. | $\frac{2\sqrt{5}}{3}$ | C. | $\frac{4\sqrt{5}}{3}$ | D. | $\frac{8\sqrt{5}}{3}$ |
2.在区间[-1,1]上任取两个数x,y,则点P(x,y)落在以原点为圆心,$\frac{1}{2}$为半径的圆内的概率是( )
| A. | $\frac{π}{16}$ | B. | $\frac{π}{8}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{2}$ |
12.袋中装有编号分别为1,2,3,…,2n的2n(n∈N*)个小球,现将袋中的小球分给A,B,C三个盒子,每次从袋中任意取出两个小球,将其中一个放入A盒子,如果这个小球的编号是奇数,就将另一个放入B盒子,否则就放入C盒子,重复上述操作,直到所有小球都被放入盒中,则下列说法一定正确的是( )
| A. | B盒中编号为奇数的小球与C盒中编号为偶数的小球一样多 | |
| B. | B盒中编号为偶数的小球不多于C盒中编号为偶数的小球 | |
| C. | B盒中编号为偶数的小球与C盒中编号为奇数的小球一样多 | |
| D. | B盒中编号为奇数的小球多于C盒中编号为奇数的小球 |