ÌâÄ¿ÄÚÈÝ

14£®ÔÚÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=sin¦Á}\end{array}}\right.$£¬£¨¦ÁΪ²ÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=4$\sqrt{2}$£®
£¨¢ñ£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèPΪÇúÏßC1Éϵ͝µã£¬ÇóµãPµ½C2ÉϵãµÄ¾àÀëµÄ×îСֵ£®

·ÖÎö £¨I£©ÀûÓÃcos2¦Á+sin2¦Á=1Ïû²ÎÊýµÃµ½C1µÄÆÕͨ·½³Ì£¬½«¼«×ø±ê·½³Ì×ó²àÕ¹¿ª¼´¿ÉµÃµ½Ö±½Ç×ø±ê·½³Ì£»
£¨II£©ÀûÓÃC1µÄ²ÎÊý·½³ÌÇó³öPµ½C2µÄ¾àÀ룬¸ù¾ÝÈý½Çº¯ÊýµÄÐÔÖÊÇó³ö¾àÀëµÄ×îСֵ£®

½â´ð ½â£º£¨I£©ÓÉ$\left\{{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=sin¦Á}\end{array}}\right.$µÃcos¦Á=$\frac{x}{\sqrt{3}}$£¬sin¦Á=y£®¡àÇúÏßC1µÄÆÕͨ·½³ÌÊÇ$\frac{{x}^{2}}{3}+{y}^{2}=1$£®
¡ß$¦Ñsin£¨¦È+\frac{¦Ð}{4}£©=4\sqrt{2}$£¬¡à¦Ñsin¦È+¦Ñcos¦È=8£®¼´x+y-8=0£®¡àÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ìʱx+y-8=0£®
£¨II£©ÉèPµã×ø±ê£¨$\sqrt{3}cos¦Á$£¬sin¦Á£©£¬¡àPµ½Ö±ÏßC2µÄ¾àÀëd=$\frac{|\sqrt{3}cos¦Á+sin¦Á-8|}{\sqrt{2}}$=$\frac{|2sin£¨¦Á+\frac{¦Ð}{3}£©-8|}{\sqrt{2}}$£¬
¡àµ±sin£¨¦Á+$\frac{¦Ð}{3}$£©=1ʱ£¬dÈ¡µÃ×îСֵ$\frac{6}{\sqrt{2}}$=3$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì£¬¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬²ÎÊý·½³ÌϾàÀ빫ʽµÄ×îÖµ£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø