ÌâÄ¿ÄÚÈÝ
14£®ÔÚÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=sin¦Á}\end{array}}\right.$£¬£¨¦ÁΪ²ÎÊý£©£¬ÒÔÔµãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=4$\sqrt{2}$£®£¨¢ñ£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèPΪÇúÏßC1Éϵ͝µã£¬ÇóµãPµ½C2ÉϵãµÄ¾àÀëµÄ×îСֵ£®
·ÖÎö £¨I£©ÀûÓÃcos2¦Á+sin2¦Á=1Ïû²ÎÊýµÃµ½C1µÄÆÕͨ·½³Ì£¬½«¼«×ø±ê·½³Ì×ó²àÕ¹¿ª¼´¿ÉµÃµ½Ö±½Ç×ø±ê·½³Ì£»
£¨II£©ÀûÓÃC1µÄ²ÎÊý·½³ÌÇó³öPµ½C2µÄ¾àÀ룬¸ù¾ÝÈý½Çº¯ÊýµÄÐÔÖÊÇó³ö¾àÀëµÄ×îСֵ£®
½â´ð ½â£º£¨I£©ÓÉ$\left\{{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=sin¦Á}\end{array}}\right.$µÃcos¦Á=$\frac{x}{\sqrt{3}}$£¬sin¦Á=y£®¡àÇúÏßC1µÄÆÕͨ·½³ÌÊÇ$\frac{{x}^{2}}{3}+{y}^{2}=1$£®
¡ß$¦Ñsin£¨¦È+\frac{¦Ð}{4}£©=4\sqrt{2}$£¬¡à¦Ñsin¦È+¦Ñcos¦È=8£®¼´x+y-8=0£®¡àÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ìʱx+y-8=0£®
£¨II£©ÉèPµã×ø±ê£¨$\sqrt{3}cos¦Á$£¬sin¦Á£©£¬¡àPµ½Ö±ÏßC2µÄ¾àÀëd=$\frac{|\sqrt{3}cos¦Á+sin¦Á-8|}{\sqrt{2}}$=$\frac{|2sin£¨¦Á+\frac{¦Ð}{3}£©-8|}{\sqrt{2}}$£¬
¡àµ±sin£¨¦Á+$\frac{¦Ð}{3}$£©=1ʱ£¬dÈ¡µÃ×îСֵ$\frac{6}{\sqrt{2}}$=3$\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì£¬¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬²ÎÊý·½³ÌϾàÀ빫ʽµÄ×îÖµ£¬ÊôÓÚ»ù´¡Ì⣮
| A£® | $b¡Ý2\sqrt{2}$»ò$b¡Ü-2\sqrt{2}$ | B£® | b¡Ý2»òb¡Ü-2 | C£® | -2¡Üb¡Ü2 | D£® | $-2\sqrt{2}¡Üb¡Ü2\sqrt{2}$ |
| A£® | Èôx2£¾1£¬Ôò-1¡Üx¡Ü1 | B£® | Èô-1¡Üx¡Ü1£¬Ôòx2¡Ü1 | ||
| C£® | Èô-1£¼x£¼1£¬Ôòx2£¼1 | D£® | Èôx£¼-1»òx£¾1£¬Ôòx2£¾1 |