题目内容
9.过点P(-2,-4)的直线l的参数方程为:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),在直角坐标系中,以原点为极点,x轴的非负半轴为极轴建设极坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),直线l与曲线C分别交于M,N.(1)写出曲线C和直线l的普通方程;
(2)若|PM|,|MN|,|PN|成等比数列,求a的值.
分析 (1)作差x-y即可把直线l的参数方程化为普通方程.曲线C:ρsin2θ=2acosθ(a>0),即ρ2sin2θ=2aρcosθ,利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$可得直角坐标方程.
(2)把直线l的参数方程:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),代入抛物线方程可得:t2-$(8\sqrt{2}+2\sqrt{2}a)$t+8a+32=0,设|PM|=t1,|PN|=t2,可得|MN|=|t2-t1|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$,由于|PM|,|MN|,|PN|成等比数列,可得|MN|2=|PM||PN|,代入计算即可得出.
解答 解:(1)直线l的参数方程为:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),消去参数t可得:x-y=2.
曲线C:ρsin2θ=2acosθ(a>0),即ρ2sin2θ=2aρcosθ,可得:直角坐标方程:y2=2ax.
(2)把直线l的参数方程:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),代入抛物线方程:y2=2ax.
可得:t2-$(8\sqrt{2}+2\sqrt{2}a)$t+8a+32=0,
∴t1+t2=$8\sqrt{2}$+2$\sqrt{2}$a,t1t2=8a+32.
∴|PM|=t1,|PN|=t2,
|MN|=|t2-t1|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{(8\sqrt{2}+2\sqrt{2}a)^{2}-4(8a+32)}$,
∵|PM|,|MN|,|PN|成等比数列,
∴|MN|2=|PM||PN|,
∴$(8\sqrt{2}+2\sqrt{2}a)^{2}$-4(8a+32)=8a+32,
化为:a=1.
点评 本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、等比数列的通项公式及其性质、弦长公式、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.
| A. | 是等差数列 | B. | 是等比数列 | C. | 是常数列 | D. | 无法确定 |
| A. | 147 | B. | 140 | C. | 130 | D. | 117 |