ÌâÄ¿ÄÚÈÝ
7£®µçÊÓ´«Ã½¹«Ë¾ÎªÁËÁ˽âijµØÇøµçÊÓ¹ÛÖÚ¶ÔijÀàÌåÓý½ÚÄ¿µÄÊÕÊÓÇé¿ö£¬Ëæ»ú³éÈ¡ÁË100Ãû¹ÛÖÚ½øÐе÷²é£¬ÆäÖÐÅ®ÐÔÓÐ55Ãû£®½«ÈÕ¾ùÊÕ¿´¸ÃÌåÓý½ÚĿʱ¼ä²»µÍÓÚ40·ÖÖӵĹÛÖÚ³ÆÎª¡°ÌåÓýÃÔ¡±£¬ÈçͼÊǸù¾Ýµ÷²é½á¹ûµÃµ½µÄ2¡Á2ÁÐÁª±í£®£¨¢ñ£©²¹È«2¡Á2ÁÐÁª±í£¬²¢¾Ý´Ë×ÊÁÏÅжÏÄãÊÇ·ñÓÐ95%ÒÔÉϵİÑÎÕÈÏΪ¡°ÌåÓýÃÔ¡±ÓëÐÔ±ðÓйأ¿
£¨¢ò£©½«ÈÕ¾ùÊÕ¿´¸ÃÌåÓýÏîÄ¿²»µÍÓÚ50·ÖÖӵĹÛÖÚ³ÆÎª¡°³¬¼¶ÌåÓýÃÔ¡±£¬ÒÑÖªÓÐ5Ãû¡°³¬¼¶ÌåÓýÃÔ¡±£¬ÆäÖÐ3ÃûÄÐÐÔ2ÃûÅ®ÐÔ£¬Èô´Ó¡°³¬¼¶ÌåÓýÃÔ¡±ÖÐÈÎÒâѡȡ2ÈË£¬ÇóÖÁÉÙÓÐ1ÃûÅ®ÐÔ¹ÛÖڵĸÅÂÊ£®
| ·ÇÌåÓýÃÔ | ÌåÓýÃÔ | ºÏ¼Æ | |
| ÄÐ | 30 | 15 | |
| Å® | 45 | 10 | 55 |
| ºÏ¼Æ | 100 |
| P£¨K2¡Ýk£© | 0.05 | 0.01 |
| k | 3.841 | 6.0635 |
·ÖÎö £¨¢ñ£©¸ù¾ÝÌâÒâÌîдÁÐÁª±í£¬¼ÆËã¹Û²âÖµ£¬¶ÔÕÕÁÙ½çÖµµÃ³ö½áÂÛ£»
£¨¢ò£©ÓÃÁоٷ¨Çó³ö»ù±¾Ê¼þÊý£¬¼ÆËãËùÇóµÄ¸ÅÂÊÖµ£®
½â´ð ½â£º£¨¢ñ£©¸ù¾ÝÌâÒ⣬Ìîд2¡Á2ÁÐÁª±íÈçÏ£º
| ·ÇÌåÓýÃÔ | ÌåÓýÃÔ | ºÏ¼Æ | |
| ÄÐ | 30 | 15 | 45 |
| Å® | 45 | 10 | 55 |
| ºÏ¼Æ | 75 | 25 | 100 |
µÃ$k=\frac{{100¡Á{{£¨{30¡Á10-45¡Á15}£©}^2}}}{75¡Á25¡Á45¡Á55}=\frac{100}{33}¡Ö3.030$£¬
ÒòΪ3.030£¼3.841£¬ËùÒÔÎÒÃÇûÓÐ95%µÄ°ÑÎÕÈÏΪ¡°ÌåÓýÃÔ¡±ÓëÐÔ±ðÓйأ»
£¨¢ò£©ÓÃA¡¢B¡¢C±íʾ3ÃûÄÐÉú£¬d¡¢e±íʾ2ÃûÅ®Éú£¬Ôò´Ó5ÈËÖÐÈÎÈ¡2ÈËÖУ¬
»ù±¾Ê¼þΪAB¡¢AC¡¢Ad¡¢Ae¡¢BC¡¢Bd¡¢Be¡¢Cd¡¢Ce¡¢de¹²10ÖÖ£¬
ÖÁÉÙÓÐ1ÈËÊÇÅ®ÐԵĻù±¾Ê¼þÊÇAd¡¢Ae¡¢Bd¡¢Be¡¢Cd¡¢Ce¡¢de¹²7ÖÖ£¬
¹ÊËùÇóµÄ¸ÅÂÊֵΪP=$\frac{7}{10}$£®
µãÆÀ ±¾Ì⿼²éÁËÁÐÁª±íÓë¶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÁоٷ¨Çó¹Åµä¸ÅÐ͵ĸÅÂÊÎÊÌ⣬ÊÇ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
17£®ÒÑÖª¼¯ºÏA={x|x+1£¾0}£¬B={-2£¬-1£¬0£¬1}£¬Ôò£¨∁RA£©¡ÉB=£¨¡¡¡¡£©
| A£® | {-2} | B£® | {-2£¬-1} | C£® | {-1£¬0£¬1} | D£® | {0£¬1} |
18£®ÎªÁ˽âÐķμ²²¡ÊÇ·ñÓëÄêÁäÏà¹Ø£¬ÏÖËæ»ú³éÈ¡ÁË40ÃûÊÐÃñ£¬µÃµ½Êý¾ÝÈçÏÂ±í£º
ÒÑÖªÔÚÈ«²¿µÄ40ÈËÖÐËæ»ú³éÈ¡1ÈË£¬³éµ½²»»¼Ðķμ²²¡µÄ¸ÅÂÊΪ$\frac{2}{5}$£®
£¨1£©Ç뽫2¡Á2ÁÐÁª±í²¹³äÍêÕû£»¾Ý´ËÊý¾ÝÅжÏÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.01µÄǰÌáÏÂÈÏΪ»¼Ðķμ²²¡ÓëÄêÁäÓйأ¿
£¨2£©£¨2£©ÒÑÖª´óÓÚ40Ë껼Ðķμ²²¡ÊÐÃñÖУ¬¾¼ì²éÆäÖÐÓÐ4ÃûÖØÖ¢»¼Õߣ¬×¨¼Ò½¨ÒéÖØÖ¢»¼ÕßסԺÖÎÁÆ£¬ÏÖ´ÓÕâ16Ãû»¼ÕßÖÐÑ¡³öÁ½Ãû£¬¼ÇÐèסԺÖÎÁƵÄÈËÊýΪ¦Î£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû
ÏÂÃæµÄÁÙ½çÖµ±í¹©²Î¿¼£º
£¨²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£©
| »¼Ðķμ²²¡ | ²»»¼Ðķμ²²¡ | ºÏ¼Æ | |
| ´óÓÚ40Ëê | 16 | ||
| СÓÚµÈÓÚ40Ëê | 12 | ||
| ºÏ¼Æ | 40 |
£¨1£©Ç뽫2¡Á2ÁÐÁª±í²¹³äÍêÕû£»¾Ý´ËÊý¾ÝÅжÏÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.01µÄǰÌáÏÂÈÏΪ»¼Ðķμ²²¡ÓëÄêÁäÓйأ¿
£¨2£©£¨2£©ÒÑÖª´óÓÚ40Ë껼Ðķμ²²¡ÊÐÃñÖУ¬¾¼ì²éÆäÖÐÓÐ4ÃûÖØÖ¢»¼Õߣ¬×¨¼Ò½¨ÒéÖØÖ¢»¼ÕßסԺÖÎÁÆ£¬ÏÖ´ÓÕâ16Ãû»¼ÕßÖÐÑ¡³öÁ½Ãû£¬¼ÇÐèסԺÖÎÁƵÄÈËÊýΪ¦Î£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû
ÏÂÃæµÄÁÙ½çÖµ±í¹©²Î¿¼£º
| P£¨K2¡Ýk£© | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
2£®ÊýÁÐ0£¬$\frac{2}{3}$£¬$\frac{4}{5}$£¬$\frac{6}{7}$¡µÄÒ»¸öͨÏʽΪ£¨¡¡¡¡£©
| A£® | an=$\frac{2£¨n-1£©}{2n-1}$ | B£® | an=$\frac{n-1}{2n+1}$ | C£® | an=$\frac{n-1}{n+1}$ | D£® | an=$\frac{2n}{3n+1}$ |
12£®ÒÑÖªÃüÌâp£º?x¡ÊR£¬x2+x-6¡Ü0£¬ÔòÃüÌâ©VpÊÇ£¨¡¡¡¡£©
| A£® | ?x¡ÊR£¬x2+x-6£¾0 | B£® | ?x¡ÊR£¬x2+x-6£¾0 | C£® | ?x¡ÊR£¬x2+x-6£¾0 | D£® | ?x¡ÊR£¬x2+x-6£¼0 |
16£®ÒÑÖªÅ×ÎïÏßy2=4x£¬A£¬BÊÇÅ×ÎïÏßµÄÁ½µã£¨·Ö±ðÔÚxÖáÁ½²à£©£¬AB=6£¬¹ýA£¬B·Ö±ð×÷Å×ÎïÏßµÄÇÐÏßl1£¬l2£¬l1Óël2½»ÓÚµãQ£¬ÇóÈý½ÇÐÎABQÃæ»ýµÄ×î´óÖµ£¨¡¡¡¡£©
| A£® | $\frac{27}{2}$ | B£® | 8 | C£® | 12$\sqrt{3}$ | D£® | 18 |
17£®ÒÑÖªÃüÌâp£º?a¡Ê£¨-¡Þ£¬-2£©£¬ÇúÏßf£¨x£©=$\frac{{x}^{2}+a}{x+1}$Ôڵ㣨1£¬f£¨1£©£©´¦ÇÐÏßµÄÇãб½Ç$¦È£¾\frac{¦Ð}{4}$£¬ÔòÏÂÃæÐðÊöÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ©VpΪ£º?a¡Ê£¨-¡Þ£¬-2£©£¬ÇúÏßf£¨x£©=$\frac{{x}^{2}+a}{x+1}$Ôڵ㣨1£¬f£¨1£©£©´¦ÇÐÏßµÄÇãб½Ç¦È£¾$\frac{¦Ð}{4}$ | |
| B£® | ©VpΪ£º?a¡Ê£¨-¡Þ£¬-2£©£¬ÇúÏßf£¨x£©=$\frac{{x}^{2}+a}{x+1}$Ôڵ㣨1£¬f£¨1£©£©´¦ÇÐÏßµÄÇãб½Ç$¦È£¾\frac{¦Ð}{4}$ | |
| C£® | ©Vp£º?a¡Ê[2£¬+¡Þ£©£¬ÇúÏßf£¨x£©=$\frac{{x}^{2}+a}{x+1}$Ôڵ㣨1£¬f£¨1£©£©´¦ÇÐÏßµÄÇãб½Ç¦È¡Ü$\frac{¦Ð}{4}$ | |
| D£® | ©VpÊǼÙÃüÌâ |