ÌâÄ¿ÄÚÈÝ

18£®ÎªÁ˽âÐķμ²²¡ÊÇ·ñÓëÄêÁäÏà¹Ø£¬ÏÖËæ»ú³éÈ¡ÁË40ÃûÊÐÃñ£¬µÃµ½Êý¾ÝÈçÏÂ±í£º
»¼Ðķμ²²¡²»»¼Ðķμ²²¡ºÏ¼Æ
´óÓÚ40Ëê16
СÓÚµÈÓÚ40Ëê12
ºÏ¼Æ40
ÒÑÖªÔÚÈ«²¿µÄ40ÈËÖÐËæ»ú³éÈ¡1ÈË£¬³éµ½²»»¼Ðķμ²²¡µÄ¸ÅÂÊΪ$\frac{2}{5}$£®
£¨1£©Ç뽫2¡Á2ÁÐÁª±í²¹³äÍêÕû£»¾Ý´ËÊý¾ÝÅжÏÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.01µÄǰÌáÏÂÈÏΪ»¼Ðķμ²²¡ÓëÄêÁäÓйأ¿
£¨2£©£¨2£©ÒÑÖª´óÓÚ40Ë껼Ðķμ²²¡ÊÐÃñÖУ¬¾­¼ì²éÆäÖÐÓÐ4ÃûÖØÖ¢»¼Õߣ¬×¨¼Ò½¨ÒéÖØÖ¢»¼ÕßסԺÖÎÁÆ£¬ÏÖ´ÓÕâ16Ãû»¼ÕßÖÐÑ¡³öÁ½Ãû£¬¼ÇÐèסԺÖÎÁƵÄÈËÊýΪ¦Î£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû
ÏÂÃæµÄÁÙ½çÖµ±í¹©²Î¿¼£º
P£¨K2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
£¨²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£©

·ÖÎö £¨1£©¸ù¾ÝÌâÒâÌîдÁÐÁª±í£¬¼ÆËã¹Û²âÖµK2£¬¶ÔÕÕÁÙ½çÖµµÃ³ö½áÂÛ£»
£¨2£©¼ÆËãËæ»ú±äÁ¿¦Î¶ÔÓ¦µÄ¸ÅÂÊÖµ£¬Ð´³ö·Ö²¼ÁУ¬Çó³öÊýѧÆÚÍûÖµ£®

½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒâÌîдÁÐÁª±íÈçÏ£»

»¼Ðķμ²²¡²»»¼Ðķμ²²¡ºÏ¼Æ
´óÓÚ40Ëê16420
СÓÚµÈÓÚ40Ëê81220
ºÏ¼Æ241640
¼ÆËã¹Û²âÖµK2=$\frac{40¡Á£¨16¡Á12-8¡Á4£©2}{20¡Á20¡Á24¡Á16}$¡Ö6.667£¾6.735£¬
ËùÒÔÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.01µÄǰÌáÏÂÈÏΪ»¼Ðķμ²²¡ÓëÄêÁäÓйأ»  £¨6·Ö£©
£¨2£©Ëæ»ú±äÁ¿¦Î¿ÉÒÔÈ¡0£¬1£¬2£¬
ÇÒP£¨¦Î=0£©=$\frac{{C}_{12}^{2}}{{C}_{16}^{2}}$=$\frac{66}{120}$=$\frac{11}{20}$£¬
P£¨¦Î=1£©=$\frac{{C}_{4}^{1}{•C}_{12}^{1}}{{C}_{16}^{2}}$=$\frac{48}{120}$=$\frac{2}{5}$£¬
P£¨¦Î=2£©=$\frac{{C}_{4}^{2}}{{C}_{16}^{2}}$=$\frac{6}{120}$=$\frac{1}{20}$£¬
¹Ê¦ÎµÄ·Ö²¼ÁÐΪ
¦Î012
P$\frac{11}{20}$$\frac{2}{5}$$\frac{1}{20}$
ÊýѧÆÚÍûΪE£¨¦Î£©=0¡Á$\frac{11}{20}$+1¡Á$\frac{2}{5}$+2¡Á$\frac{1}{20}$=$\frac{1}{2}$£®£¨12  ·Ö£©

µãÆÀ ±¾Ì⿼²éÁËËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÓëÊýѧÆÚÍûµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÁÐÁª±íÓë¶ÀÁ¢ÐÔ¼ìÑéµÄÎÊÌ⣬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø