ÌâÄ¿ÄÚÈÝ
18£®ÎªÁ˽âÐķμ²²¡ÊÇ·ñÓëÄêÁäÏà¹Ø£¬ÏÖËæ»ú³éÈ¡ÁË40ÃûÊÐÃñ£¬µÃµ½Êý¾ÝÈçÏÂ±í£º| »¼Ðķμ²²¡ | ²»»¼Ðķμ²²¡ | ºÏ¼Æ | |
| ´óÓÚ40Ëê | 16 | ||
| СÓÚµÈÓÚ40Ëê | 12 | ||
| ºÏ¼Æ | 40 |
£¨1£©Ç뽫2¡Á2ÁÐÁª±í²¹³äÍêÕû£»¾Ý´ËÊý¾ÝÅжÏÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.01µÄǰÌáÏÂÈÏΪ»¼Ðķμ²²¡ÓëÄêÁäÓйأ¿
£¨2£©£¨2£©ÒÑÖª´óÓÚ40Ë껼Ðķμ²²¡ÊÐÃñÖУ¬¾¼ì²éÆäÖÐÓÐ4ÃûÖØÖ¢»¼Õߣ¬×¨¼Ò½¨ÒéÖØÖ¢»¼ÕßסԺÖÎÁÆ£¬ÏÖ´ÓÕâ16Ãû»¼ÕßÖÐÑ¡³öÁ½Ãû£¬¼ÇÐèסԺÖÎÁƵÄÈËÊýΪ¦Î£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû
ÏÂÃæµÄÁÙ½çÖµ±í¹©²Î¿¼£º
| P£¨K2¡Ýk£© | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
·ÖÎö £¨1£©¸ù¾ÝÌâÒâÌîдÁÐÁª±í£¬¼ÆËã¹Û²âÖµK2£¬¶ÔÕÕÁÙ½çÖµµÃ³ö½áÂÛ£»
£¨2£©¼ÆËãËæ»ú±äÁ¿¦Î¶ÔÓ¦µÄ¸ÅÂÊÖµ£¬Ð´³ö·Ö²¼ÁУ¬Çó³öÊýѧÆÚÍûÖµ£®
½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒâÌîдÁÐÁª±íÈçÏ£»
| »¼Ðķμ²²¡ | ²»»¼Ðķμ²²¡ | ºÏ¼Æ | |
| ´óÓÚ40Ëê | 16 | 4 | 20 |
| СÓÚµÈÓÚ40Ëê | 8 | 12 | 20 |
| ºÏ¼Æ | 24 | 16 | 40 |
ËùÒÔÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.01µÄǰÌáÏÂÈÏΪ»¼Ðķμ²²¡ÓëÄêÁäÓйأ» £¨6·Ö£©
£¨2£©Ëæ»ú±äÁ¿¦Î¿ÉÒÔÈ¡0£¬1£¬2£¬
ÇÒP£¨¦Î=0£©=$\frac{{C}_{12}^{2}}{{C}_{16}^{2}}$=$\frac{66}{120}$=$\frac{11}{20}$£¬
P£¨¦Î=1£©=$\frac{{C}_{4}^{1}{•C}_{12}^{1}}{{C}_{16}^{2}}$=$\frac{48}{120}$=$\frac{2}{5}$£¬
P£¨¦Î=2£©=$\frac{{C}_{4}^{2}}{{C}_{16}^{2}}$=$\frac{6}{120}$=$\frac{1}{20}$£¬
¹Ê¦ÎµÄ·Ö²¼ÁÐΪ
| ¦Î | 0 | 1 | 2 |
| P | $\frac{11}{20}$ | $\frac{2}{5}$ | $\frac{1}{20}$ |
µãÆÀ ±¾Ì⿼²éÁËËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÓëÊýѧÆÚÍûµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÁÐÁª±íÓë¶ÀÁ¢ÐÔ¼ìÑéµÄÎÊÌ⣬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
8£®ÎªÁ˽âÀºÇò°®ºÃÕßСÀîµÄͶÀºÃüÖÐÂÊÓë´òÀºÇòʱ¼äÖ®¼äµÄ¹ØÏµ£¬Ï±í¼Ç¼ÁËСÀîijÔÂ1ºÅµ½5ºÅÿÌì´òÀºÇòʱ¼äxµ¥Î»£ºÐ¡Ê±£©Óëµ±ÌìͶÀºÃüÖÐÂÊyÖ®¼äµÄ¹ØÏµ£º
£¨1£©ÓÃÏßÐԻعé·ÖÎöµÄ·½·¨Ç󻨹鷽³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$£®£¨2£©Ô¤²âСÀî¸ÃÔÂ6ºÅ´ò6СʱÀºÇòµÄͶÀºÃüÖÐÂÊ£®
$\left\{\begin{array}{l}{\stackrel{¡Ä}{b}=\frac{\sum_{i-1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i-1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{¡Ä}{a}=\overline{y}-\stackrel{¡Ä}{b}\overline{x}}\end{array}\right.$£®
| ʱ¼äx | 1 | 2 | 3 | 4 | 5 |
| ÃüÖÐÂÊy | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
$\left\{\begin{array}{l}{\stackrel{¡Ä}{b}=\frac{\sum_{i-1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i-1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{¡Ä}{a}=\overline{y}-\stackrel{¡Ä}{b}\overline{x}}\end{array}\right.$£®
6£®2016Äê´ºÍí¹ýºó£¬ÎªÁËÑо¿ÑÝÔ±ÉÏ´ºÍí´ÎÊýÓëÊܹØ×¢¶ÈµÄ¹ØÏµ£¬Ä³Õ¾¶ÔÆäÖÐһλ¾³£ÉÏ´ºÍíµÄÑÝÔ±ÉÏ´ºÍí´ÎÊýÓëÊܹØ×¢¶È½øÐÐÁËͳ¼Æ£¬µÃµ½ÈçÏÂÊý¾Ý£º
£¨¢ñ£©Èô¸ÃÑÝÔ±µÄ·ÛË¿ÊýÁ¿yÓëÉÏ´ºÍí´ÎÊýxÂú×ãÏßÐԻع鷽³Ì£¬ÊÔÇ󻨹鷽³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$£¬²¢¾Í´Ë·ÖÎö£º¸ÃÑÝÔ±ÉÏ´ºÍí11´ÎʱµÄ·ÛË¿ÊýÁ¿£»
£¨¢ò£©ÈôÓÃ$\frac{y_i}{x_i}$£¨i=1£¬2£¬3£¬4£¬5£©±íʾͳ¼ÆÊý¾Ýʱ·ÛË¿µÄ¡°¼´Ê±¾ùÖµ¡±£¨¾«È·µ½ÕûÊý£©£º
£¨1£©ÇóÕâ5´Îͳ¼ÆÊý¾Ýʱ·ÛË¿µÄ¡°¼´Ê±¾ùÖµ¡±µÄ·½²î£»
£¨2£©´Ó¡°¼´Ê±¾ùÖµ¡±ÖÐÈÎÑ¡2×飬ÇóÕâÁ½×éÊý¾ÝÖ®ºÍ²»³¬¹ý15µÄ¸ÅÂÊ£®
²Î¿¼¹«Ê½£º$\begin{array}{l}ÓÃ×îС¶þ³Ë·¨ÇóÏßÐԻع鷽³ÌϵÊý¹«Ê½£º\\ \widehatb=\frac{{\sum_{i-1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i-1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i-1}^n{£¨{{x_i}-\overline x}£©£¨{{y_i}-\overline y}£©}}}{{\sum_{i-1}^n{{{£¨{{x_i}-\overline x}£©}^2}}}}£¬\widehata=\overline y-b\overline x\end{array}$£®
| ÉÏ´ºÍí´ÎÊýx£¨µ¥Î»£º´Î£© | 2 | 4 | 6 | 8 | 10 |
| ·ÛË¿ÊýÁ¿y£¨µ¥Î»£ºÍòÈË£© | 10 | 20 | 40 | 80 | 100 |
£¨¢ò£©ÈôÓÃ$\frac{y_i}{x_i}$£¨i=1£¬2£¬3£¬4£¬5£©±íʾͳ¼ÆÊý¾Ýʱ·ÛË¿µÄ¡°¼´Ê±¾ùÖµ¡±£¨¾«È·µ½ÕûÊý£©£º
£¨1£©ÇóÕâ5´Îͳ¼ÆÊý¾Ýʱ·ÛË¿µÄ¡°¼´Ê±¾ùÖµ¡±µÄ·½²î£»
£¨2£©´Ó¡°¼´Ê±¾ùÖµ¡±ÖÐÈÎÑ¡2×飬ÇóÕâÁ½×éÊý¾ÝÖ®ºÍ²»³¬¹ý15µÄ¸ÅÂÊ£®
²Î¿¼¹«Ê½£º$\begin{array}{l}ÓÃ×îС¶þ³Ë·¨ÇóÏßÐԻع鷽³ÌϵÊý¹«Ê½£º\\ \widehatb=\frac{{\sum_{i-1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i-1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i-1}^n{£¨{{x_i}-\overline x}£©£¨{{y_i}-\overline y}£©}}}{{\sum_{i-1}^n{{{£¨{{x_i}-\overline x}£©}^2}}}}£¬\widehata=\overline y-b\overline x\end{array}$£®
13£®Éè$f£¨x£©=\left\{\begin{array}{l}x+1£¬£¨x¡Ý0£©\\ 4x£¬£¨x£¼0£©\end{array}\right.$£¬Ôòf£¨2£©=£¨¡¡¡¡£©
| A£® | 1 | B£® | 2 | C£® | 8 | D£® | 3 |
7£®µçÊÓ´«Ã½¹«Ë¾ÎªÁËÁ˽âijµØÇøµçÊÓ¹ÛÖÚ¶ÔijÀàÌåÓý½ÚÄ¿µÄÊÕÊÓÇé¿ö£¬Ëæ»ú³éÈ¡ÁË100Ãû¹ÛÖÚ½øÐе÷²é£¬ÆäÖÐÅ®ÐÔÓÐ55Ãû£®½«ÈÕ¾ùÊÕ¿´¸ÃÌåÓý½ÚĿʱ¼ä²»µÍÓÚ40·ÖÖӵĹÛÖÚ³ÆÎª¡°ÌåÓýÃÔ¡±£¬ÈçͼÊǸù¾Ýµ÷²é½á¹ûµÃµ½µÄ2¡Á2ÁÐÁª±í£®
£¨¢ñ£©²¹È«2¡Á2ÁÐÁª±í£¬²¢¾Ý´Ë×ÊÁÏÅжÏÄãÊÇ·ñÓÐ95%ÒÔÉϵİÑÎÕÈÏΪ¡°ÌåÓýÃÔ¡±ÓëÐÔ±ðÓйأ¿
£¨¢ò£©½«ÈÕ¾ùÊÕ¿´¸ÃÌåÓýÏîÄ¿²»µÍÓÚ50·ÖÖӵĹÛÖÚ³ÆÎª¡°³¬¼¶ÌåÓýÃÔ¡±£¬ÒÑÖªÓÐ5Ãû¡°³¬¼¶ÌåÓýÃÔ¡±£¬ÆäÖÐ3ÃûÄÐÐÔ2ÃûÅ®ÐÔ£¬Èô´Ó¡°³¬¼¶ÌåÓýÃÔ¡±ÖÐÈÎÒâѡȡ2ÈË£¬ÇóÖÁÉÙÓÐ1ÃûÅ®ÐÔ¹ÛÖڵĸÅÂÊ£®
ÓÉK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+dΪÑù±¾ÈÝÁ¿
£¨¢ñ£©²¹È«2¡Á2ÁÐÁª±í£¬²¢¾Ý´Ë×ÊÁÏÅжÏÄãÊÇ·ñÓÐ95%ÒÔÉϵİÑÎÕÈÏΪ¡°ÌåÓýÃÔ¡±ÓëÐÔ±ðÓйأ¿
£¨¢ò£©½«ÈÕ¾ùÊÕ¿´¸ÃÌåÓýÏîÄ¿²»µÍÓÚ50·ÖÖӵĹÛÖÚ³ÆÎª¡°³¬¼¶ÌåÓýÃÔ¡±£¬ÒÑÖªÓÐ5Ãû¡°³¬¼¶ÌåÓýÃÔ¡±£¬ÆäÖÐ3ÃûÄÐÐÔ2ÃûÅ®ÐÔ£¬Èô´Ó¡°³¬¼¶ÌåÓýÃÔ¡±ÖÐÈÎÒâѡȡ2ÈË£¬ÇóÖÁÉÙÓÐ1ÃûÅ®ÐÔ¹ÛÖڵĸÅÂÊ£®
| ·ÇÌåÓýÃÔ | ÌåÓýÃÔ | ºÏ¼Æ | |
| ÄÐ | 30 | 15 | |
| Å® | 45 | 10 | 55 |
| ºÏ¼Æ | 100 |
| P£¨K2¡Ýk£© | 0.05 | 0.01 |
| k | 3.841 | 6.0635 |