题目内容

在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是(  )
A、36πB、28π
C、20πD、16π
考点:旋转体(圆柱、圆锥、圆台)
专题:空间位置关系与距离
分析:使△ABC绕直线BC旋转一周,则所形成的几何体是一个底面半径为4,高为3的一个圆锥,代入圆锥体积公式,可得答案.
解答: 解:将△ABC绕直线BC旋转一周,
得到一个底面半径为4,高为3的一个圆锥,
故所形成的几何体的体积V=
1
3
×π×42×3=16π,
故选:D
点评:本题考查的知识点是旋转体,其中分析出旋转得到的几何体形状及底面半径,高等几何量是解答的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网