题目内容
9.(1-$\sqrt{x}$)6(1-$\root{3}{x}$)4的展开式中,x2的系数是( )| A. | -75 | B. | -45 | C. | 45 | D. | 75 |
分析 把∴(1-$\sqrt{x}$)6 和(1-$\root{3}{x}$)4的分别利用二项式定理展开,可得(1-$\sqrt{x}$)6(1-$\root{3}{x}$)4的展开式中x2的系数.
解答 解:∵(1-$\sqrt{x}$)6(1-$\root{3}{x}$)4=(1-6$\sqrt{x}$+15x-20x$\sqrt{x}$+15x2-6x2$\sqrt{x}$+x3)•(1-4$\root{3}{x}$+6$\root{3}{{x}^{2}}$-4x+$\root{3}{{x}^{4}}$),
∴(1-$\sqrt{x}$)6(1-$\root{3}{x}$)4的展开式中,x2的系数是15•(-4)+15=-45,
故选:B.
点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.
练习册系列答案
相关题目
14.已知F1,F2是椭圆C1与双曲线C2的公共焦点,点P是C1与C2的公共点,若椭圆C1的离心率e1=$\frac{\sqrt{3}}{2}$,∠F1PF2=$\frac{π}{2}$,则双曲线C2的离心率e2的值为( )
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{\sqrt{6}}{2}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
1.Sn是数列{an}的前n项和,Sn=3an-2a1,a3=$\frac{1}{4}$,bn=anlnan,则数列{bn}的最小项是( )
| A. | 第3项 | B. | 第4项 | C. | 第5项 | D. | 第6项 |
18.现将5张连号的电影票分给甲、乙等5个人,每人一张,且甲、乙分得的电影票连号,则共有不同分法的种数为( )
| A. | 12 | B. | 24 | C. | 36 | D. | 48 |
19.甘肃省瓜州县自古就以生产“美瓜”面名扬中外,生产的“瓜州蜜瓜”有4个系列30多个品种,质脆汁多,香甜可口,清爽宜人,含糖量达14%~19%,是消暑止渴的佳品,调查表明,蜜瓜的甜度与海拔高度,日照时长,温差有极强的相关性,分别用x,y,z表示蜜瓜甜度与海拔高度,日照时长,温差的相关程度,big对它们进行量化:0表示一般,1表示良,2表示优,在用综合指标w=x+y+z的值平定蜜瓜的顶级,若w≥4,则为一级;若2≤w≤3,则为二级;若0≤w≤1,则为三级,今年来,周边各省也开始发展蜜瓜种植,为了了解目前蜜瓜在周边各省的种植情况,研究人员从不同省份随机抽取了10块蜜瓜种植地,得到如下结果:
(1)若有蜜瓜种植地110块,试估计等级为三家的蜜瓜种植地的数量;
(2)从样本里等级为一级的蜜瓜种植地中随机抽取两块,求这两块种植地的综合指标w至少有一个为4的概率.
| 种植地编号 | A | B | C | D | E |
| (x,y,z) | (1,0,0) | (2,2,1) | (0,1,1) | (2,0,2) | (1,1,1) |
| 种植地编号 | F | G | H | I | J |
| (x,y,z) | (1,1,2) | (2,2,2) | (0,0,1) | (2,2,1) | (0,2,1) |
(2)从样本里等级为一级的蜜瓜种植地中随机抽取两块,求这两块种植地的综合指标w至少有一个为4的概率.