题目内容

函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<
π
2
)的最高点D的坐标(
π
8
,2),由D点运动到相邻最低点时函数曲线与x轴的交点(
8
,0)
(1)求f(x)的解析式
(2)求f(x)的单调增区间.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的图象
专题:三角函数的图像与性质
分析:(1)由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ,可得函数的解析式.
(2)令 2kπ-
π
2
≤2x+
π
4
≤2kπ+
π
2
,k∈z,求得x的范围,可得函数的增区间.
解答: 解:(1)由最高点的纵坐标可得A=2,再根据
T
4
=
8
-
π
8
=
1
4
×
ω
,求得ω=2.
再把D的坐标(
π
8
,2)代入函数解析式可得 2sin(2×
π
8
+φ)=2,结合|φ|<
π
2
可得φ=
π
4

故函数f(x)=2sin(2x+
π
4
).
(2)令 2kπ-
π
2
≤2x+
π
4
≤2kπ+
π
2
,k∈z,求得 kπ-
8
≤x≤kπ+
π
8
,k∈z,
故函数的增区间为[kπ-
8
,kπ+
π
8
],k∈z.
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的增区间,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网