题目内容
已知定义在R上的函数f(x)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)+f(x2)+1恒成立,f(1)=1,且对任意正整数n,有an=
,bn=f(
)+1.
(1)求数列{an},{bn}的通项公式;
(2)记Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,比较
Sn与Tn的大小关系.
| 1 |
| f(n) |
| 1 |
| 2n |
(1)求数列{an},{bn}的通项公式;
(2)记Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,比较
| 4 |
| 3 |
考点:数列与不等式的综合,数列与函数的综合
专题:等差数列与等比数列
分析:(1)利用对任意实数x1,x2,总有f(x1+x2)=f(x1)+f(x2)+1恒成立,f(1)=1,可令x1=x,x2=1,得f(x+1)-f(x)=2,利用累加求和可得f(x)=(f(x)-f(x-1))+(f(x-1)-f(x-2))+…+(f(2)-f(1))+f(1)=2x-1,分别令x=n,x=
,即可得出an,bn;
(2))由anan+1=
=
(
-
),利用累加求和即可得出Sn.利用bnbn+1=
•
=
,Tn=
+
+…+
利用等比数列的前n项和公式即可得出.利用作差法
Sn-Tn=
-
(1-
)=
(
-
).利用二项式定理可得4n=22n=(1+1)2n=1+
+
+…>1+2n.即可得出.
| 1 |
| 2n |
(2))由anan+1=
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| 22n-1 |
| 1 |
| 2 |
| 1 |
| 23 |
| 1 |
| 22n-1 |
| 4 |
| 3 |
| 4n |
| 3(2n+1) |
| 2 |
| 3 |
| 1 |
| 4n |
| 2 |
| 3 |
| 1 |
| 4n |
| 1 |
| 2n+1 |
| C | 1 2n |
| C | 2 2n |
解答:
解:(1)∵对任意实数x1,x2,总有f(x1+x2)=f(x1)+f(x2)+1恒成立,f(1)=1,
∴可令x1=x,x2=1,得f(x+1)-f(x)=2,∴f(x)=(f(x)-f(x-1))+(f(x-1)-f(x-2))+…+(f(2)-f(1))+f(1)=2x-1,
∴令x=n,则an=
;
令x=
,则bn=
-1+1=
.
(2)∵anan+1=
=
(
-
),∴Sn=
[(1-
)+(
-
)+…+(
-
)]=
(1-
)=
.
∵bnbn+1=
•
=
,∴Tn=
+
+…+
=
=
(1-
).
∴
Sn-Tn=
-
(1-
)=
(
-
).
∵4n=22n=(1+1)2n=1+
+
+…>1+2n.
∴
<
,∴
-
<0.
∴
Sn<Tn.
∴可令x1=x,x2=1,得f(x+1)-f(x)=2,∴f(x)=(f(x)-f(x-1))+(f(x-1)-f(x-2))+…+(f(2)-f(1))+f(1)=2x-1,
∴令x=n,则an=
| 1 |
| 2n-1 |
令x=
| 1 |
| 2n |
| 2 |
| 2n |
| 1 |
| 2n-1 |
(2)∵anan+1=
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
∵bnbn+1=
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| 22n-1 |
| 1 |
| 2 |
| 1 |
| 23 |
| 1 |
| 22n-1 |
| ||||
|
| 2 |
| 3 |
| 1 |
| 4n |
∴
| 4 |
| 3 |
| 4n |
| 3(2n+1) |
| 2 |
| 3 |
| 1 |
| 4n |
| 2 |
| 3 |
| 1 |
| 4n |
| 1 |
| 2n+1 |
∵4n=22n=(1+1)2n=1+
| C | 1 2n |
| C | 2 2n |
∴
| 1 |
| 4n |
| 1 |
| 2n+1 |
| 1 |
| 4n |
| 1 |
| 2n+1 |
∴
| 4 |
| 3 |
点评:利用累加求和、裂项求和、等比数列的前n项和公式、作差法、二项式定理、不等式的性质等是解题的关键.
练习册系列答案
相关题目
设集合A={(x,y)|xy(
+
)+|x+y-1|≤1},B={(x,y)|x2+y2≤1},则在同一直角坐标平面内,A∩B所形成区域的面积为( )
| 1 |
| |x| |
| 1 |
| |y| |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|