题目内容

17.已知各项均为正数的等比数列{an}满足a1=2且a1,a3,2a2+6成等差数列.
(I)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足4${\;}^{{b}_{1}-1}$4${\;}^{{b}_{2}-1}$…4${\;}^{{b}_{n}-1}$=(an)${\;}^{{b}_{n}}$(n∈N),证明:数列{bn}是等差数列;
(Ⅲ)证明:$\frac{n}{2}$-$\frac{1}{3}$<$\frac{{a}_{1}-1}{{a}_{2}-1}$+$\frac{{a}_{2}-1}{{a}_{3}-1}$+…+$\frac{{a}_{n}-1}{{a}_{n+1}-1}$$<\frac{n}{2}$(n∈N)

分析 (Ⅰ)由等比数列通项公式和等差数列性质求出公比,由此能求出数列{an}的通项公式.
(Ⅱ)由已知得${4}^{({b}_{1}+{b}_{2}+…+{b}_{n})-n}$=${2}^{n{b}_{n}}$,从而2[(b1+b2+…+bn)-n]=nbn,由此推导出bn+2-bn+1=bn+1-bn(n∈N*),进而能证明{bn}是等差数列.
(Ⅲ)由$\frac{{a}_{k}-1}{{a}_{k+1}-1}$=$\frac{{2}^{k}-1}{{2}^{k+1}-1}$=$\frac{{2}^{k}-1}{2({2}^{k}-\frac{1}{2})}$$<\frac{1}{2}$,$\frac{{a}_{k}-1}{{a}_{k+1}-1}$=$\frac{{2}^{k}-1}{{2}^{k+1}-1}$=$\frac{1}{2}-\frac{1}{2({2}^{k+1}-1)}$≥$\frac{1}{2}-\frac{1}{3}•\frac{1}{{2}^{k}}$,能证明$\frac{n}{2}$-$\frac{1}{3}$<$\frac{{a}_{1}-1}{{a}_{2}-1}$+$\frac{{a}_{2}-1}{{a}_{3}-1}$+…+$\frac{{a}_{n}-1}{{a}_{n+1}-1}$$<\frac{n}{2}$(n∈N).

解答 解:(Ⅰ)∵各项均为正数的等比数列{an}满足a1=2且a1,a3,2a2+6成等差数列,
∴2(2q2)=2+2(2q)+6,且q>0,
∴解得q=2或q=-1(舍),
∴an=2n
证明:(Ⅱ)∵数列{bn}满足4${\;}^{{b}_{1}-1}$4${\;}^{{b}_{2}-1}$…4${\;}^{{b}_{n}-1}$=(an)${\;}^{{b}_{n}}$(n∈N),
∴${4}^{({b}_{1}+{b}_{2}+…+{b}_{n})-n}$=${2}^{n{b}_{n}}$,
∴2[(b1+b2+…+bn)-n]=nbn,①
2[(b1+b2+…+bn+bn+1)-(n+1)]=(n+1)bn+1.②
②-①,得2(bn+1-1)=(n+1)bn+1-nbn
即(n-1)bn+1-nbn+2=0,nbn+2-(n+1)bn+1+2=0.
③-④,得nbn+2-2nbn+1+nbn=0,
即bn+2-2bn+1+bn=0,
∴bn+2-bn+1=bn+1-bn(n∈N*),
∴{bn}是等差数列.
(Ⅲ)∵$\frac{{a}_{k}-1}{{a}_{k+1}-1}$=$\frac{{2}^{k}-1}{{2}^{k+1}-1}$=$\frac{{2}^{k}-1}{2({2}^{k}-\frac{1}{2})}$$<\frac{1}{2}$,k=1,2,3,…,n,
∴$\frac{{a}_{1}-1}{{a}_{2}-1}$+$\frac{{a}_{2}-1}{{a}_{3}-1}$+…+$\frac{{a}_{n}-1}{{a}_{n+1}-1}$$<\frac{n}{2}$(n∈N),
∵$\frac{{a}_{k}-1}{{a}_{k+1}-1}$=$\frac{{2}^{k}-1}{{2}^{k+1}-1}$=$\frac{1}{2}-\frac{1}{2({2}^{k+1}-1)}$
=$\frac{1}{2}-\frac{1}{3•{2}^{k}+{2}^{k}-2}$≥$\frac{1}{2}-\frac{1}{3}•\frac{1}{{2}^{k}}$,k=1,2,3,…,n,
∴$\frac{{a}_{1}-1}{{a}_{2}-1}$+$\frac{{a}_{2}-1}{{a}_{3}-1}$+…+$\frac{{a}_{n}-1}{{a}_{n+1}-1}$>$\frac{n}{2}-\frac{1}{3}$,
∴$\frac{n}{2}$-$\frac{1}{3}$<$\frac{{a}_{1}-1}{{a}_{2}-1}$+$\frac{{a}_{2}-1}{{a}_{3}-1}$+…+$\frac{{a}_{n}-1}{{a}_{n+1}-1}$$<\frac{n}{2}$(n∈N).

点评 本题考查数列的通项公式的求法,考查等差数列的证明,考查不等式的证明,是中档题,解题时要认真审题,注意放缩法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网