题目内容

已知点P是椭圆
x2
5
+
y2
4
=1上的一点,且以点P及焦点F1,F2为顶点的三角形的面积等于1,则这样的点P有(  )
A、1个B、2个C、3个D、4个
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:根据题意,点P是椭圆上的一点,以点P与焦点F1,F2为顶点的三角形的面积等于1,得出三角形的底边|F1F2|的值,
再求出P点的纵坐标y,即可求出P点的横坐标,得出答案来.
解答: 解:∵椭圆的标准方程为
x2
5
+
y2
4
=1,∴|F1F2|=2;
设P点坐标为(x,y),
∵P是椭圆上的一点,
且以点P与焦点F1,F2为顶点的三角形的面积等于1,
∴y=±1,
把y=±代入椭圆方程中,求出x=±
15
2

∴点P的坐标为(
15
2
,1),(
15
2
,-1),(-
15
2
,1)和(-
15
2
,-1)共4个.
故选:D.
点评:本题考查了椭圆的标准方程与几何性质的应用问题,解题的关键是利用三角形的高求出点P的纵坐标,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网