题目内容

定义域为R的函数f(x)满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x2-x,则当x∈[-2,-1]时,f(x)的最小值为
 
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:根据题意,求出x∈[-2,-1]时f(x)的解析式,再求f(x)在区间[-2,-1]上的最小值即可.
解答: 解:当x∈[-2,-1]时,x+2∈[0,1],
∴f(x+2)=(x+2)2-(x+2)=x2+3x+2,
又f(x+1)=2f(x),
∴f(x+2)=f[(x+1)+1]=2f(x+1)=4f(x),
∴4f(x)=x2+3x+2(-2≤x≤-1),
∴f(x)=
1
4
(x2+3x+2)=
1
4
(x+
3
2
)
2
-
1
16
(-2≤x≤-1),
∴当x=-
3
2
时,f(x)取得最小值-
1
16

故答案为:-
1
16
点评:本题考查了函数的解析式以及在闭区间上的最值问题,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网