题目内容

12.点P所在轨迹的极坐标方程为ρ=2cosθ,点Q所在轨迹的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=4+2t}\end{array}\right.$(t为参数),则|PQ|的最小值是(  )
A.2B.$\frac{4\sqrt{5}}{5}$+1C.1D.$\frac{4\sqrt{5}}{5}$-1

分析 求出极坐标方程的直角坐标方程,求出圆心坐标以及半径,通过两点的距离公式函数的性质求出|PQ|的最小值.

解答 解:点P所在轨迹的极坐标方程为ρ=2cosθ,直角坐标方程为x2+y-2x=0,圆心(1,0),半径为1,
点Q所在轨迹的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=4+2t}\end{array}\right.$(t为参数),普通方程为2x-y+2=0,
圆心到直线的距离d=$\frac{4}{\sqrt{5}}$=$\frac{4\sqrt{5}}{5}$,
∴|PQ|的最小值是$\frac{4\sqrt{5}}{5}$-1,
故选D.

点评 本题是基础题,考查曲线的极坐标方程与直角坐标方程的互化,距离公式的应用,考查转化思想,计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网