题目内容

13.已知定点A(-5,0),B(5,4),点P为双曲线$C:\frac{x^2}{16}-\frac{y^2}{9}=1$右支上任意一点,则|PB|-|PA|的最大值为-4.

分析 设双曲线左焦点为F2,根据双曲线的定义可知|PB|-|PA|=|PB|-|PF2|-2a,进而可知当P、F2、B三点共线时有最大值,根据双曲线方程可求的F2的坐标,利用两点间的距离公式求得答案.

解答 解:由双曲线$C:\frac{x^2}{16}-\frac{y^2}{9}=1$,可知A(-5,0),是双曲线的左焦点,设双曲线左焦点为F2
则|PB|-|PA|=|PB|-|PF2|-2a,|PB|-|PF2|≤|BF2|,
当P、F2、B三点共线时有最大值|BF2|=4,而对于这个双曲线,2a=8,
所以最大值为4-8=-4.
故答案为-4.

点评 本题主要考查了双曲线的应用.解题的过程灵活运用了双曲线的定义和用数形结合的方法解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网