题目内容

19.在△ABC中,sin2B=sinAsinC.
(1)若$\frac{1}{tanA}$,$\frac{\sqrt{3}}{3}$,$\frac{1}{tanC}$成等差数列,求cosB的值;
(2)若$\frac{BC}{sinA}$=4,求△ABC面积的最大值.

分析 (1)根据等差数列的定义以及三角恒等变换求出sinB,从而求出cosB的值即可;
(2)求出三角形的面积的解析式,令f(x)=8sin3x,(0<x<π),根据函数的单调性求出三角形面积的最大值即可.

解答 解:(1))若$\frac{1}{tanA}$,$\frac{\sqrt{3}}{3}$,$\frac{1}{tanC}$成等差数列,
则$\frac{2\sqrt{3}}{3}$=$\frac{cosA}{sinA}$+$\frac{cosC}{sinC}$=$\frac{sinCcosA+cosCsinA}{sinAsinC}$=$\frac{sin(A+C)}{{sin}^{2}B}$=$\frac{1}{sinB}$,
故sinB=$\frac{\sqrt{3}}{2}$,cosB=±$\frac{1}{2}$;
(2)若$\frac{BC}{sinA}$=4,即$\frac{b}{sinB}$=4,b2=16sin2B,
∵sin2B=sinAsinC,
∴ac=b2
∴S△ABC=$\frac{1}{2}$b2sinB=8sin3B,(0<B<π),
令f(x)=8sin3x,(0<x<π),
则f′(x)=24sin2xcosx,
令f′(x)>0,解得:x<$\frac{π}{2}$,
令f′(x)<0,解得:x>$\frac{π}{2}$,
故f(x)在(0,π)递增,
故f(x)在(0,$\frac{π}{2}$)递增,在($\frac{π}{2}$,π)递减,
f(x)max=f($\frac{π}{2}$)=8,
故三角形面积的最大值是8.

点评 本题考查了正弦定理的应用,考查等差数列以及导数的应用,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网